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Abstract
Media research is, in part, interested in accurately explaining and predicting
people’s media selection. Explanation is an accurate description of the
causal mechanisms that govern media selection whereas prediction is
focused onmaking accurate inferences about unobserved data. However,
meta-analyses demonstrate that existing media selection theories and
models have limited explanatory accuracy. The predictive accuracy of
these theories and models is unknown. Our project bridges this gap by
empirically specifying how predictable, in principle, media selection is. To
achieve this ambition, we articulate key conceptual distinctions between
explanation and prediction. Subsequently, we report three empirical studies
that examine prediction accuracy as a function of model complexity and
estimate the theoretical maximum predictability of people’s music-listening
and web-browsing behaviors. Approximately 80% of music selection and
60% of web-browsing behaviors are predictable. Moreover, a simple Markov
Chainmodel that uses information about people’s prior media selection can
achieve about 20%prediction accuracy formusic selection and 10% accuracy
in predicting web-browsing. By estimating the maximum predictability of
people’s media selection behavior, we gain a first-ever benchmark by which
media selection theories andmodels can be compared. More broadly, we
show how simple models that account for the sequential dependency in
media selection lend new insights and suggest novel directions for future
theory development.
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PREDICTING MEDIA SELECTION

Introduction

Media research is, in part, interested in identifying mechanisms and devel-
oping theories to explain people’s complex media use behaviors. By expla-
nation, wemean that a theory specifies the causalmechanisms that give rise
to an observable behavior. A commonly used research paradigm for devel-
oping and testing explanations is to build diagrams of constructed variables
connected by directional arrows, and then use statistical Null-Hypothesis-
Significance-Testing (NHST) to answer research questions aboutwhether an
expected effect exists in the collected dataset of self-reported or behavioral
responses (Levine, Weber, Hullett, et al., 2008; Levine, Weber, Park, & Hullett,
2008; Pearl & Mackenzie, 2018).

These explanatory approaches are common in the social sciences, in-
cluding the field of Communication. And they have advanced our under-
standing of media use behaviors. This includes, but is not limited to, en-
tertainment media choices (Knobloch, 2003), informational media con-
sumption (Knobloch-Westerwick, 2014), media multitasking (Ophir et al.,
2009), social media usage (Wang et al., 2012), individual differences in me-
dia use (Weaver, 1991), andmore. Under different theoretical perspectives
and assumptions, media usage research continues to flourish by testing
and updating numerous models and theories, many of which are related to
media selection, such as uses and gratifications (Katz et al., 1973),moodman-
agement theory (Zillmann, 1988), and information utility theory (Hastall,
2009).

These developments have created a massive landscape of explanatory
models and theories. They have also received fierce criticism for their
(in)ability to replicate (Dienlin et al., 2021; LeBel et al., 2018), lack of in-
tegrative theoretical framework (Huskey et al., 2020; Lang & Ewoldsen, 2010),
and most critically, their low explanatory power (Lang, 2013). In fact, meta-
analytic work shows that effect sizes for explanatory studies focused on
media selection range from r = 0.07–0.24 (Rains et al., 2018). This indicates
that, at best, 5.8% of the variation of media selection behaviors can be ex-
plained by existing theory1. These issues suggest that our existing theories
are insufficient for explaining a majority of the variation in media selection

1Explainability is best indicated by the total explained variation (e.g., R squared or Eta
squared) of the statistical model including all variables. However, model explainability is often
either unreported or not-interpreted given the hypothesis-oriented nature of explanatory
studies, which typically require reporting and interpreting effect size and p-values for a single
hypothesis test related to a specific explanatory variable of interest. For this reason, we can
only estimate the total explained variation with the highest effect size reported in existing
meta-analytic work.
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behaviors.

Communication researchers also want to build theories that predict. By
predict, we mean a theory’s ability to make accurate inferences about unob-
served data. Analytically, this means fitting (training) a statistical model on
one set of data, and applying (testing) that samemodel and its parameter
estimates on a new set of data, with high accuracy. Theoretically, explana-
tory and predictive accuracy are identical. This may explain a common
perception among social scientists is that theories with high explanatory
accuracy will also have high predictive accuracy. However, this often simply
is not true. In fact, for explanatory theories and models, predictive accuracy
is often substantially lower than explanatory accuracy (Yarkoni &Westfall,
2017). As already mentioned, the current state of affairs for our ability to
explain people’s media selection is quite low. What about our prediction
accuracy?

We do not know. We do not currently have an idea of how predictable
media selection should be, in principle. As a consequence, we also do not
know how explainable people’s media selection should be. Answering this
question is vital. Theoretically, an answer gives us insight into how know-
able people’s media selection behavior is. It also gives us some hints for
developing explanations that increase knowledge. Practically, people’s lives
are impacted by predictive media selection models. These include recom-
mendation algorithms developed to enhance people’s experiences when
streaming video, listening to music, scrolling through a social media feed,
and browsing the internet. Right now, existing predictive models that gov-
ern recommendation algorithms achieve accuracies that are substantially
higher than state-of-the art media selection theories (e.g., Covington et al.,
2016). By discovering the theoretical maximum predictability of people’s
media selection, we gain a new benchmark for evaluating both explanatory
and predictive theories and models. We also gain insight into how to bridge
the accuracy gap between explanatory and predictive frameworks.

In this article, we show thatmedia selection is highly predictable, in prin-
ciple. Accordingly, it shouldbepossible, in principle, to develop theories that
substantially improve on existing explanatory accuracy. We further argue
that gaps between predictive and explanatory accuracy can be bridged by
estimating, evaluating, and comparing the predictability of derived explana-
tory models, which eventually complement the traditional explanation of
media behaviors. In the following sections, we first articulate key distinc-
tions between explanation and prediction, then illustrate the benefits and
cautions of building predictivemodels. We illustrate these distinctions by an
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empirical study that evaluates the predictability and explainability of simple
as compared to complex models on dichotomous preferential movie selec-
tion behavioral data. Consistent with prior meta-analytic work, and regard-
less of model complexity, these results show relatively lowmodel accuracy.
Accordingly, we ask what is the theoretical upper bound formodel accuracy?
To answer this question, we present two empirical studies that measure the
theoretical maximum predictability of people’s real-world sequential media
selection behaviors using a large-scale music listening dataset, as well as
a large-scale web-browsing dataset. We show that people’s music listen-
ing behavior is 80% predictable in principle. Similarly, web-browsing has
60%maximum predictability. We then apply a simple Markov Chain (MC)
predictive model aimed at achieving the maximum predictability of music
listening and web-browsing behaviors. This analysis shows that a simple
model that accounts for temporal dependency in the data can achieve up
to∼20% prediction accuracy, which substantially outpaces the accuracy of
state-of-the-art media selection theories. We conclude with a discussion of
our results and their implications for theory.

Explanation, Prediction, And Why A Model’s Explanatory
Accuracy Often Tells Us Very Little About Its Predictive Accu-
racy

Recently, discussions that distinguish between prediction and explanation
have been raised in multiple social science disciplines including psychol-
ogy (Yarkoni &Westfall, 2017), behavioral economics (Peterson et al., 2021),
political science (Lin, 2015), computational social science (Hilbert et al.,
2018; Hofman et al., 2021), as well as media research (Fisher & Hamilton,
2021). However, predictivemodelingmethods have been rarely or incorrectly
implemented in media research. Thus, the following section aims to clear
misconceptions about what predictive modeling is, give suggestions for
building predictive models, and provide an exemplary study for measuring
the predictability of media behaviors.

What Distinguishes Explanatory and Predictive Models?

Earlier we discussed the conceptual distinctions between explanation and
prediction. As a reminder, explanation is the application of statistical mod-
els for testing causal hypotheses about relationships between theoretical
constructs, whereas prediction is the application of statistical models or
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data mining techniques to generate predictions for new or future observa-
tions (Shmueli, 2010). In this section, we discuss the applied implications of
these distinctions.

First, explanation and prediction serve different proximal research goals.
In lay language, explanation aims to explain and prediction aims to predict.
More complicated, as illustratedby Shmueli (2010), explanatory studies try to
explain the true associations or causalmechanisms (F ) using a hypothetical
relationship (f ) between theoretical constructs. Explanatory studies collect
independent variables (X) and dependent variables (Y ), estimate statisti-
cal models (f̂(X)), and use NHST to verify if f̂(X) = f(X) is statistically
plausible. Here the proximal goal of explanation is testing the hypothetical
relationship f , with the collected data (X and Y ) and statistical models
(f̂(X)) as tools. In contrast, predictive studies aim to generate good predic-
tions (Ŷ ) for new observations of target variables (Y ) by estimating a model
(f̂(X)). Thus the proximal goal of prediction is the targeted variables (Y ),
with the collected predictors (X) and hypothetical relationships (f ) as the
tool. Even though explanation and prediction serve different proximal goals,
both should pursue the same ultimate goal to approximate the true relation-
ships (F ) by updating hypothetical relationships (f ) and minimizing the
errors in the hypothetical models.

The second conceptual distinction between explanation and prediction
involves model errors and the bias-variance trade-off. Precisely, model
errors, measured as the sum of errors, can be decomposed into three types
of errors, that are: model bias, which refers to the errors resulting from the
misspecification of the hypothetical models, model variance, which refers
to the errors resulting from the variation of collected samples from the true
population, and the irreducible or true errors, which refers to the errors
resulting from the stochastic data generating process and are irreducible
by any modeling methods (Hastie et al., 2009). Explanation and prediction
reducemodel bias and variance errors in distinct ways. To illustrate, imagine
a study testing the relationship between people’s comedymovie preferences
and their age.

Model bias exists because a correlational relationship between comedy
movie preference and people’s age is unlikely to be the true explanatory
relationship. Why? Is age itself the true explanatory mechanism? Or is age
some correlate of the true mechanism. A true explanatory model specifies
the mechanism, and not its correlate. Identifying these mechanisms is a
core goal of lifespan-based media selection research specifically (Mares
et al., 2008; Shifriss et al., 2015), and explanatory research more generally.
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To reduce model bias, both explanatory and predictive studies need to
add relationships between the outcome variable and independent variables
into the model to capture the variation of outcome variables. Explanation
and prediction methods reduce model bias differently, in a way such that
explanation modeling methods emphasize the correctness of models while
predictive modeling emphasizes the completeness of models. Specifically,
explanatory studies propose theory-driven hypothetical relationships, re-
ject null relationships, and retain statistically significant relationships in
the model. As a result, to ease the procedures of statistical testing and inter-
pretation of the testing results, explanatory studies usually consider a small
size of simple linear relationships when testing hypothetical relationships.
However, these simple linear relationships, such as the positive or negative
association between age andmedia preference, usually fail to capture the
complete variation of media preferences. On the other hand, prediction
modeling methods use data-driven approaches with complex models, by
adding all possible hypothetical relationships into themodel and increasing
the complexity of the model to capture variation in outcome variables as
much as possible. An example, neural networks usually do a better job in
function approximation compared to simple explanatory linear models (Pe-
terson et al., 2021), thus performing better in predicting outcome variables.
However, the complexity of thesemodels oftenmakes them difficult or even
impossible to interpret.

Model bias can be reduced by increasing model complexity. However,
doing so often results in overfitting issues (Yarkoni & Westfall, 2017). In
short, overfitting increases model variance. What is model variance? Model
variance is the result of a variation of estimated model parameters due to
the variation of sampling distributions. Imagine that ten different research
groups collect ten independent datasets. Each group then fits the same
statistical model, as defined by theory, for each of the ten independent
datasets. We will observe model variance. This is because of the variance in
the sampling distribution that comprises each collected dataset. When each
unique dataset is used to fit a regression model, the estimated regression
coefficients will differ across each different dataset as a function of the
variance in the sampling distribution (for a concrete example of the impact
of model variance on issues of statistical inference and reproduibility, see
Marek et al., 2022).2 As model complexity increases to reduce model bias,

2For linear models, model variance is calculated as p ∗ σ2 where p = the number of parame-
ters in the model. Accordingly, model variance increases as the number of model parameters
increases. Of course, when the number of model parameters is held constant, model variance
decreases as the sample size in each sampling distribution increases.
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model variance increases. This is known as the bias-variance tradeoff.

Model variance matters for explanatory and predictive models in dif-
ferent ways. For predictive models, model variance emerges due to high
model complexity, and works directly against predictive accuracy. Predic-
tive accuracy decreases as model variance increases, and this relationship
is hard to counteract, especially with complex and sophisticated models
because the larger size of model parameters means higher model variance
(Domingos, 2012). To deal with high model variance and overfitting issues,
predictive models usually use regularization techniques. For instance, a
common approach is shrinkage methods, such as ridge regression or princi-
pal component regression, to shrink or eliminate parameters to avoidmodel
variance and improve predictions.

For explanatory models whose main research focus is not predictive
accuracy, model variance emerges due to procedural overfitting, which can
explain why some replication attempts are successful, and why some fail
(Yarkoni & Westfall, 2017), particularly in replication attempts with larger
sampling distributions that more accurately reflect the true population
distribution (Ebersole et al., 2016; Marek et al., 2022; Open Science Collab-
oration, 2015). Explanatory studies usually ignore the existence of model
variance. As explained above, high model variance results in high model
errors. However, this increase of model errors can hardly be recognized
by explanatory studies, because only one sample is collected to estimate
and evaluate the model without any regularization technique to overcome
overfitting problems (Yarkoni &Westfall, 2017). Statistical tools exist for ex-
planatory modeling to control model variance by model comparison using
evaluation metrics such as adjusted R squared (R2

a), Akaike information cri-
terion (AIC; Akaike, 1998), Bayesian information criterion (BIC; Schwarz,
1978). However, these tools are not always implemented in explanatory
studies. Moreover, these model performance metrics are usually limited
as a generic method to evaluate models, because (1) they rely on a set of
complicated assumptions on testing models and data, and (2) they are com-
puted by the parameter counts and the maximized likelihood which might
be unavailable to somemodels (Burnham & Anderson, 2004; Vrieze, 2012;
Yarkoni &Westfall, 2017).

In summary, explanation andprediction have different focuses onmodel
errors. Explanation focuses on building a correct model which reduces the
bias of the estimated models. But prediction aims to build a good model
which decreases the model bias while also controlling the model variance
(Shmueli, 2010). These different focuses on model error lead to different
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modeling approaches. Explanatory modeling usually use NHST to reject
non-significant hypothetical relationships in an effort to reduce the model
bias. On the other hand, predictive models usually maintain a large size of
possible hypothetical relationships to create a complex model in order to
reduce model bias, and use shrinkage methods to restrict model variance.

Finally, explanation uses in-sample data to evaluate a hypothesized
model, while prediction uses out-of-sample data to assess model perfor-
mance. For explanatory models, this means gathering data and fitting a
model on the singular dataset. For predictive models, this means gather-
ing two or more independent datasets. A commonly used technique for
achieving this aim is to split one large dataset into two or more smaller
independent datasets. Subsequently, one dataset is used to fit (train) the
model and the other dataset is used to evaluate (test) the model. This is
known as k-fold cross-validation and the number of folds (k) is≤ nwhere
n = number of observations in the dataset. In k-fold cross-validation, the
model and parameter estimates trained on one or more fold(s) are then
fitted to the data in the subsequent fold(s). Mean square error (MSE) and
other model performance parameters (e.g., accuracy, precision, recall, f1)
are then calculated to evaluate the model’s performance on each fold, and a
distribution of model evaluation metrics is obtained. The best performing
models achieve lowMSE scores and high model performance when fitted
to multiple unique test datasets.

Most linear modeling techniques, when applied to explanatory models,
fit amodel thatminimizesMSE as best as possible. For example, a regression
model estimates parameters that are optimized to reduce the model’s MSE
(this is also known as the line of best fit). Predicting into an out-of-sample
dataset is more difficult than parameter estimation for an in-sample dataset.
This is because the expectedMSE for an out-of-sample data point can be
decomposed intomodel variance,model bias, and irreducible (or true) error
(Hastie et al., 2009). Thus, even thoughMSEtraining = MSEtest is theoret-
ically possible, in most applications,MSEtraining ≪ MSEtest. Therefore
evaluations that use a model’s accuracy (e.g., effect size), calculated using
in-sample data, often overestimate the model’s predictive accuracy.3 This is
why we earlier said that good explanatory models are often not also good
predictive models.

If empirical explanatory models and meta-analyses of explanatory mod-
els possibly overestimate a model’s predictive accuracy, a different solution

3This also is true for meta-analyses conducted on explanatory research using in-sample
model estimation. This means that the effect size reported in such a meta-analysis likely
overestimates predictive accuracy.

8 VOL. 5, NO. 1, 2023



COMPUTATIONAL COMMUNICATION RESEARCH

is necessary. In what follows, we first examine the discrepancy between
explanatory and predictive accuracy in empirical models of media selection
that examine static media choices. We also recognize that people regularly
select media sequentially, and recent theorizing has considered this tem-
poral dependency (Gong & Huskey, in press). Accordingly, we examine
howmuch predictive information temporal dependencies in selection data
offer, and describe an approach for estimating the theoretical maximum
predictability of people’s sequential media selection. We then report the
results of a simple Markov Chain model designed to accurately predict peo-
ple’s sequential media choices by accounting for temporal dependency in
the data.

Method

Open Science Practices

In accordance with calls for open practices in communication science (Bow-
man & Keene, 2018; Dienlin et al., 2021; Lewis, 2020), the code necessary to
reproduce these analyses is posted to GitHub4. The data used in this project
are already open and can be accessed from their relevant repositories.

Building Models of Static and Sequential Media Selection

Media selections are discrete responses, meaning the possible value space
for media choices is separate individually. Thus model building for media
choices requires a probabilistic or deterministic specification of the rela-
tionship between discrete media options with independent variables (Gong
et al., 2023). How to specify this relationship depends on research questions
and the media selection contexts. For instance, a generalized linear model
can predict media choices for new users by assuming each media selection
is independent with each other selection, with explanatory variables such
as user characteristics, situational factors, or media option characteristics.
On the other hand, a sequential model can predict media choices for new
episodes of existing media users, with predictive variables such as media
choice histories and previous evaluations of media content.

In the following section, we introduce both types of models in their
simple format. For static media selection, we discuss two types of models:
linear logistic models (LLM), a type of generalized linear model, and Sup-
port Vector Machine (SVM), a type of black-box machine learning model.

4https://github.com/cogcommscience-lab/media_selection_predictability
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For sequential media selection, we discuss: entropy based approaches for
estimating maximummodel predictability, an approach that examines the
randomness in sequential data, andMarkov Chain (MC) models, a type of
model that accounts for temporal dependency in data.

Generalized Linear Model: Linear Logistic Model

LLM assumes each media choice observation is independently made by
media users without sequential dependencies, meaning future choices do
not depend on previous choices. It estimates the probability of choosing
a specific media option with a sigmoid function transforming the linear
combination of independent variables (xi) and regression coefficients (βi)
into a probability value (P ) ranging from zero to one (Equation 1).

P =
1

1 + exp(−β0 −
∑m

i βixi)
(1)

Black BoxModel: Support Vector Machine

Distinct from generalized linear models, which estimate the probability of a
given option being selected, SVM deterministically classifies media choices
by constructing the max-margin hyperplane separating media choice ob-
servations into distinct classes depending on independent variables (James
et al., 2013). With kernelmethods that construct the high-dimensional space
of all given observations, SVM captures the higher-order non-linear relation-
ships between independent variables and media selection choices. Thus
SVM is capable of predicting media selection as resultant of hard-to-explain
complex mechanisms. However, due to its high opaque complexity, SVM is
usually difficult to interpretively explain the mechanisms of how indepen-
dent variables lead to media selection.

Estimating Maximum Predictability of Sequential Media Se-
lection

The accessibility of digital trace data provides new opportunities for re-
searchers to develop theories andmodels to predict and understand peo-
ple’s behaviors. In principle, people’s behaviors are highly predictable from
their previous behavioral histories. For example, with mobile geo-tracking
data, studies found that people’s mobility behaviors have 93% potential pre-
dictability, which indicates the non-randomness of high regularity in human
physical mobility patterns (Song et al., 2010). Moreover, studies have shown
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that this theoretical predictability upper bound is empirically achievable via
MCmodels (including the classicMCmodel, hiddenMCmodels, andmixed
MCmodels), neural networks, and Bayesian networks (Lu et al., 2013). Simi-
larly, studies found that people’s dyadic communication processes in open
source collaborative communication platforms (e.g., Github, Wikipedia)
have about 80% potential predictability, and one fourth of the predictability
of the collaboration sequences originates from the dynamic structure of the
dyadic communication processes, while three-fourths of the predictability
comes from the static frequencies (Hilbert et al., 2018).

When examining sequential selection, we needmodels that can account
for temporal dependencies in the data. Accordingly, we will focus on esti-
mating the theoretical maximumpredictability of people’s sequential media
selection behavior, and its empirical predictability using MCmodeling. We
define sequential media selection as the trajectory of media content that a
user traverses in amedia space. Said differently, our study explores how peo-
ple select media over time and investigates the theoretical upper boundary
for how predictable media selection is. We do this for both music listening
and web-browsing. We motivate this analysis using music listening, but the
analytical logic is identical when applied to web-browsing.

Maximum predictability can be estimated by measuring the entropy of
trajectories, which is a discrete sequence of digital traces (for a full demon-
stration of the logic underpinning equations 2 - 7, see Song et al., 2010). This
sequence can be denoted as:

Xj = {X1, X2, ..., XT } (2)

Here,X1 encodes the music track an individual is listening to at time
1, andXT denotes the track at time T . Entropy measures the disorderness
and randomness of the trajectory, thus higher entropy will lead to lower
predictability. Specifically, empirical entropy (Sempirical) can be calculated
from the true trajectories observed as specified in equation 3:

Sempirical = −
∑

X′
i⊂Xi

P (X ′
i)× log2[P (X ′

i)] (3)

In equation 3, P (X ′
i) is the probability of finding a particular time-

ordered subsequenceX ′
i in the trajectoryXi.

This approach also requires an appropriate null model. We can calculate
two types of null entropy from null models of the trajectory. A random
entropy (Srand) approach assumes visited tracks are uniformly distributed
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and is given by equation 4, whereN is the number of unique tracks in the
trajectory.

Srand = log2(N) (4)

By comparison, uncorrelated entropy (Sunc) assumes that the order of
visited tracks can be randomly shuffled, and is given by equation 5, where
Pk denotes the probability of track k being visited.

Sunc = −
N∑

k=1

pk × log2(Pk) (5)

With the estimated entropies for each trajectory, the upper bound of the
predictability (Π) can be given by solving Fano’s inequality (equation 6 and
7):

S = H(Π) + [1−H(Π)]× log2(N − 1) (6)

H(Π) = −Πlog2(Π)− (1−Π)log2(1−Π) (7)

Thus, we can calculate the maximum predictability (Πempirical) of the
empirical trajectories with the empirical entropy (Sempirical), maximum
predictability (Πrand) of the null uniformly distributed trajectories with
random entropy (Srand), and maximum predictability (Πunc) of the null
shuffled trajectories with uncorrelated entropy (Sunc). These values are
calculated for each trajectory for each participant in each database (music
listening, web-browsing). Inference testing is then conducted on using the
empirical and null distributions using an independent samples t-test with
α = .05 (two-tailed).

Sequential Model: Markov Chain Model

MC based models are often used to interrogate temporal dependency in
choices. For instance, Lu et al. (2013) found that temporal dependencies can
be modeled to achieve high predictability of human physical mobility. In
the current study, as a preliminary attempt to investigate people’s sequential
media selection, we built an order oneMCmodel in an effort to approach
theoretical maximum predictability. Essentially, the order oneMCmodel
assumes eachmedia selection event (i.e., choosing a song to listen to or a
website to visit) only depends on the adjacent previous choice and is inde-
pendent of every other previous choice. Thus, given the choiceCi at time

12 VOL. 5, NO. 1, 2023
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t− 1, the MCmodel will predict the probability of choosing a media option
Cj at time t as the conditional probability P (Cj |Ci), which is estimated as
in equation 8, whereNci,Ck

denotes the number of occurrences of choosing
Ck after choosingCi, andm denotes the total number of unique options.

P (Cj |Ci) =
NCi,Cj∑m
k=1 NCi,Ck

(8)

Data Description and Pre-Processing

In this study, we use three datasets. The first dataset (see Dichotomous
Movie Selection section) allows us to apply models of various complexity in
order to examine howmodel complexity shapes explanation and prediction
accuracy (given the same set of user and media features). The second and
third datasets (see Sequential Music and Website Selection section) provide
temporal information which allows us to examine sequential dependencies
in the data. One constraint of the first dataset is that it lacks temporal
features, whereas the second and third datasets lack user andmedia features.
When examined holistically, it becomes possible to evaluate which features
have the strongest contribution tomodel accuracywhile also demonstrating
that temporal dependenices in sequential selection can yield more accurate
models.

Dichotomous Movie Selection Dataset

We obtained a movie selection dataset from a dichotomous movie selection
task, where participants (N = 301) repeatedly (n = 140) chose their prefer-
ential movie option among two movie options that systematically varied
in valence and arousal (Gong et al., 2023). In this study, participants were
also placed into different mood states that systematically varied in valence
and arousal. This dataset contains a total of 42,140 (301× 140) movie selec-
tion observations. From this dataset, in addition to selection observations,
we extracted media movie features (i.e., valence and arousal difference be-
tween two options), media user characteristics (i.e., race, gender, age), and
situational factors (i.e., mood valence and arousal).

In order to evaluatemodel predictability, i.e., prediction accuracy for out-
of-samplemedia choices, we split the dataset into train (80%) and test (20%)
datasets by randomly drawing media choice observations for each partici-
pant separately. Accordingly, the training dataset includes 33,712 (301×112)
media choices, while the test dataset includes 8,428 (301×28)media choices.

GONG & HUSKEY 13
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Model explainability was evaluated by examining within-sample model fit
for the overall dataset, as is standard procedure for explanatory models.

Sequential Music andWebsite Selection Dataset

To examine maximum predictability andMC predictability of people’s se-
quential media selection, we obtained two large-scale digital trace datasets:
a music-listening dataset from Last.fm5 (Celma, 2010), and a web-browsing
dataset from theWeb History Repository6. The music listening dataset was
collected from Last.fm (a music recommendation platform) using the plat-
form’s API. The dataset contains 19,098,862 listening records for 992 users.
The web browsing dataset was collected through voluntary submissions of
web-browsing histories from contributors, which include a total of 5,155,149
web-page visits from 524 users.

For the music listening trace data, we excluded music listeners who: (a)
listened to more than 20,000 unique tracks or less than 200 unique tracks
(n = 64), (b) only listened to the same tracks (n = 1), or (c) only listened to
novel tracks (n = 31)7. We excluded people with a small number of listening
records because entropy estimation is unstable when the sequence is short.
People with a large number of unique tracks were excluded to make sure
the computing time is reasonable. We also excluded people with only one
unique track and with all unique tracks, because their predictability should
artificially be 1 and 0 respectively. The preprocessed music listening data
includes 17,779,387 listening records from 920 individuals.

For the same reasons, we excluded web browsers who: (a) visited more
than 20k unique websites or less than 20 unique websites (n = 48), (b) only
visited the same website (n = 1), or (c) only listened to novel websites (n
= 11), from the web browsing data8. The final web browsing data includes
1,971,227 web browsing records from 465 individuals.

Results

Predicting and Explaining Independent Media Selection

In order to predict and explain people’s movie choices, we estimated several
models ranging from simple to complex, including simple and complex

5http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
6http://webhistoryrepository.l3s.uni-hannover.de/download.php
7These filtering criteria result in overlapping filtered subjects.
8Same as in music listening dataset, filtering criteria result in overlapping filtered subjects.
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LLMs, ridge logistic models of complex relationships, and a black-box ma-
chine learning SVMmodel. These LLMs are capable of generating expla-
nations and predictions for new users or new episodes of existing users,
because these models assume that each media selection event is indepen-
dent of each other. We estimated LLMs using the lme4 package (Bates et al.,
2015), the ridge logisticmodel using the glmnet package (Tay et al., 2023), and
the SVMmodel using the scikit-learn package (Pedregosa et al., 2011). Then,
we evaluated model predictability (i.e., percentage of accurate predictions)
for out-of-sample media selection in the test dataset, and explainability
(i.e., percentage of accurate estimates) of in-sample media selection in the
training dataset (Figure 1).

We found that, compared to chance accuracy at 50%, the simple explana-
tory LLMwith only movie features (i.e., movie valence andmovie arousal)
predicts 59.0% out-of-sample choices and explains 58.9% in-sample choices.
After adding situational factors (i.e., mood valence andmood arousal) and
the two-way interactions between situational factors and movie features,
the simple explanatory LLM predicts 59.0% out-of-sample choices and ex-
plains 59.0% in-sample choices. Furthermore, the simple explanatory LLM,
which includes the interaction between movie features and media user race
predicts 59.1% out-of-sample choices and explains 59.2% in-sample choice.
Similarly, simple explanatory LLMwith movie features and media user gen-
der predicts 60.3% out-of-sample choices and explains 60.0% in-sample
choices. Simple explanatory LLMwith movie features andmedia user age
predicts 60.7 out-of-sample choices and explains 60.5% in-sample choices.
Finally, the LLMmodels which include all two-way interactions between
media features and other independent variables (i.e., mood, race, gender,
age) predicts 61.7% out-of-sample choices and explains 61.9% in-sample
choices.

We also estimated more complex predictive models and evaluated their
predictability and explainability. We found that the complex LLMwith seven-
way interaction terms of all independent variables (i.e., movie features,
user characteristics, and situational factors) predicts 62.4% out-of-sample
choices and explains 64.1% in-sample choices. After applying regularization
techniques (i.e., L2 norm regularization and cross validation), the ridge
logistic model of the seven-way interactions predicts 62.6% out-of-sample
choices and explains 63.8% in-sample choices. Finally, the black box SVM
model predicts 63.4% out-of-sample choices and explains 65.3% in-sample
choices.

In summary, for simple models, as the models becomemore andmore
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Figure 1: Accuracy evaluations for different models based on their predictability for out-of-
sample choices and explainability for in-sample choices. The X-axis encodes predictive accuracy,
and starts from 0.5 because the base chance predictive accuracy is 0.5 for binary prediction.
Here, the theoretical model represents the model based on Mood Management Theory as
specified in Gong et al. (2023).

complex by adding linear terms into the LLM, themodel’s predictability and
explainability increase simultaneously. However, at a certain point when the
model is becoming too complex to interpret (e.g., the seven-way interaction
LLM), the model starts overfitting and shows a large discrepancy between
predictability and explainability due to high model variance. Regularization
techniques used in the ridge model help to address the overfitting issue by
slightly increasing predictability and lowering explainability. Finally, the
black box SVMmodel achieved the highest predictability. In general, our
results reported here supported our arguments about (1) the existence of
the distinction between predictability for out-of-sample data and explain-
ability for in-sample data, (2) the bias-variance trade-off phenomenon and
overfitting issues that emerge when amodel becomes increasingly complex,
(3) regularization techniques can help address the overfitting issues when
building predictive models.
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Maximum Predictability for Sequential Media Selection

In the above section, we examined how model complexity, coupled with
theoretical variables of interest, shapes model accuracy when predicting
and explaining static media selection. The results were largely consistent
with existing meta-analytic (Rains et al., 2018) work that shows similarly
low levels of accuracy. Is this the best that can be done? In this section, we
draw on recent theorizing that temporal dependencies in sequential media
selection offer important signal (Gong & Huskey, in press). With this focus
on examining temporal dependency, we ask the following questions: what
is the theoretical uppermaxima for model accuracy, and what is the discrep-
ancy between empirical model’s accuracy and the theoretical maximum
accuracy? Said differently, how predictable is real-world sequential media
selection, and howwell can we currently predict? To answer these questions,
we estimated the theoretical maximum predictability for sequential music
listening and web-browsing behaviors. The measured entropies andmaxi-
mum predictability for each music listener (n = 920) and each web-browser
(n = 465) were estimated by scipy optimization tools (Virtanen et al., 2020).

Since Srand ≥ Sunc ≥ Sempirical, it can be shown thatΠrand ≤ Πunc ≤
Πempirical. Based on these results, the theoretical upper bound for people’s
media listening has maximum predictability at about 80% (Figure 2A). Sec-
ond, the maximum predictability of empirical music listening trajectories
(M = 0.787, SD = 0.124) is significantly higher than both uncorrelated lis-
tening trajectories (M = 0.237, SD = 0.096; t(919) = 178.330, p < 0.001),
and random listening trajectories (M = 0.000, SD = 0.000; t(919) =

191.296, p < 0.001). Third, by comparing the predictability differences
between the two null models, we noticed that there is only a small increase
between the predictability of the shuffled null trajectories and the random
null trajectories, from 0 to 0.237, compared to the increase of predictability
by considering the order in music listening trajectories (Figure 2B). This
means that each functions as a suitable null distribution.

Similarly, the theoretical upper bound for people’s web-browsing has
a maximum predictability at about 60% (Figure 3A). The maximum pre-
dictability of empirical web-browsing trajectories (M = 0.628, SD = 0.096)
is significantly higher than both uncorrelated browsing null trajectories
(M = 0.173, SD = 0.085; t(464) = 139.064, p < 0.001), and random
browsing null trajectories (M = 0.003, SD = 0.004; t(464) = 182.218, p <

0.001). The difference in predictability of the shuffled and random null
trajectories was also small (Figure 3B).

In summary, people’s sequential media selection patterns have high
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Figure 2: For the Last.fm dataset, these distributions show (A) measured entropy or S and (B)
maximum predictability or Π.

Figure 3: For the Web History Repository, these distributions show (A) measured entropy or S
and (B) maximum predictability or Π.

regularity, such that we can possibly predict a maximum of approximately
80% of music listening and 60% of web-browsing behaviors. Interestingly,
frequency (Sunc) of listening to a music track or visiting a website offers
substantially lower predictability scores when compared to information
that encodes the order (Sempirical) in whichmusic tracks were listened to or
websites were visited. Thus, it is critical to point out that, for future model
building to explain or predict people’smedia selection, theories should focus
more on the order of tracks being visited compared to the frequency of each
track being visited.
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Markov Chain Model Predictability for Sequential Media
Selection

The above results emphasize the importance of order (temporal depen-
dency) in estimating theoretical maximumpredictability for music listening
and web-browsing. Accordingly, we fitted order one MCmodels for each of
the music listening (n = 920) and web-browsing (n = 465) trajectories. Next,
following Lu et al. (2013), for each step in the music listening trajectories,
we predict the subjects’ next step by maximizing the conditional probabil-
ity of moving from the current track/site to the next track/site. Finally, we
compute the accuracy of the MC predictions, defined as the percentage of
correct predictions.

Formusic listening, the results suggest that, with a simpleMarkov Chain,
we can achieve prediction accuracy at about 20% (M = 0.212, SD = 0.206;
Figure 4A). There is also a strongpositive relationshipbetween theprediction
accuracy of the MCmodel and the estimated maximum predictability, and
the MC model prediction accuracy is strictly bounded by the maximum
predictability (Figure 4B). Finally, the difference between the MC prediction
accuracy and the maximum predictability is still surprisingly large (M =

0.575, SD = 0.106; Figure 4A).

Figure 4: Results of MC model of music listening.

For web-browsing, we obtained similar results as music listening. The
MCmodel achieves at about 10% prediction accuracy (M = 0.096, SD =

0.080; Figure 5A). And MC prediction accuracy has a strong positive rela-
tionship with maximum predictability (Figure 5B). The difference between
the MC prediction accuracy and the maximum predictability is also large
(M = 0.533, SD = 0.045; Figure 5A).

In summary, with the knowledge of an individual’s current media choice
(listening track/website visit), we can successfully predict 21.2% of the next
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Figure 5: Results of MC model of web browsing.

listening track and 9.6% of the next website visit with aMCmodel. This high
predictability indicates that people’s media behaviors follow certain rules
and order, which have not been well-exploited in previous media selection
studies. The high potential predictability should strengthen communication
researchers’ confidence in theory building to explain and predict media
behaviors. Moreover, the positive relationship between the MC prediction
accuracy and the maximum predictability indicates the convergent validity
of the theoretical maximum predictability measures. Lastly, the large gap
betweenMC prediction accuracy andmaximum predictability suggests that
there is still a large space for future theoretical and modeling improvement
to capture the variation of music listening choices.

Discussion

In the current study, we articulated the key theoretical distinction between
explanation and prediction, and potential benefits of applying predictive
methods inmedia selection research as complements to traditional explana-
tory approaches. Our empirical results showcased (1) that it is possible for
predictive models to achieve higher accuracy compared to traditional ex-
planatory models by increasing model complexity and adopting regulariza-
tion techniques; (2) people’s real-worldmedia selection is highly predictable,
in principle, and can be predicted by sequential predictivemodels with high
accuracy, and (3) in addition to theoretical variables that are thought to pre-
dict static media selection, temporal dependencies in the data offer strong
signal that can be used to make accurate predictions (Bialek, 2022) about
sequential media selection (Gong & Huskey, in press).

Traditional media selection studies often focus on exploring howme-
dia features, user characteristics, and situational factors influence media
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selection at the population level. This approach views media selection in a
snapshot scenario and assumes eachmedia selection is an observation inde-
pendent of its antecedents. However, real-worldmedia selection happens in
a dynamic environment, where future media choices depend on preceding
media consumption in a regular, habitual, and routine way (Schnauber-
Stockmann et al., 2023). Thus, the snapshot view of media selection neces-
sarily represents an incomplete theoretical framework to guide explaining
and predicting media selection, where sequential dependencies among
media choices are non-trivial. Furthermore, our maximum predictability
results show that empirical media selection, such as music listening and
web browsing, can only be more accurately predicted after considering the
sequential dependencies amongmedia choices. This result suggests that,
in addition to user characteristics, media features, and situational factors,
futuremedia selection research should consider sequential dependencies in
theoretical, statistical, and computationalmodeling (for an example of what
this might look like, see Gong & Huskey, in press). Doing so will account for
sequential dependencies and dynamic variation in media selection.

Though uplifting to show a simple MCmodel can predict people’s se-
quential media selection with high accuracy, it is still worthwhile to note
that theMCmodel is a data-drivenmodelwith a large number of parameters
(number of unique tracks squared). This presents a clear interpretability
problem. Whatwas it about a prior track that made it so successful at pre-
dicting a future track? In short, we simply do not know. The predictive
accuracy of our MCmodels was high, but their explanatory interpretability
is quite low. Looking to the future, there are at least two strategies for improv-
ing predictive accuracy: lean into explanatory ambiguity by building more
complex data-driven models, or find a way to use data-driven predictive
models to build elegant theory-driven models. In what follows, we discuss
both.

Using Predictive Models to Inform Explanatory Models

Predictive models can help researchers navigate the exploration of complex
relationships between theoretical constructs and aid in the discovery of
novel constructs andmeasurements. This most certainly is true for media
selection research. For instance, using a computational reward-learning
model, researchers were able to predict the sequential timing of people’s
social media usage (Lindström et al., 2021) and find the relationship be-
tween past social media rewards and future social media usage. Similarly,
by building a generative predictive model of Wiki-page browsing behaviors,
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researchers were able to measure behavioral tendencies (i.e., reinforcement
and regularity) from predictive models, and then discover novel relation-
ships between people’s curiosity-related personalities and the estimated
behavioral tendencies (Lydon-Staley et al., 2020). Furthermore, large-scale
datasets of people’s media use behaviors are increasingly accessible (in-
cluding the ones we used in this study), as is mounting research interest in
understanding media use behaviors (e.g., a recent call for digital trace stud-
ies in Computational Communication Research). These datasets contain
a vast trove of data regarding people’s media use and behavior including
information about what media content/platform people choose and when
people made the choice. Compared with traditional explanatory studies,
predictive modeling is usually advantageous in modeling these complex
behavior-generating processes.

At the same time, building highly accurate predictive models is a core
goal of computer science andmedia and entertainment industries. Ideally,
media research should help inform these efforts. However, that is not really
the current situation. Currently, most models predicting media selection in
the machine learning industry (e.g., recommendation systems) are highly
complex black-boxmodels with a large number of parameters, such as deep
neural networks, neural collaborative filtering models, recurrent neural
networks, or transformer models. These models take enormous media con-
tent features and large-scale media consumption data, and generate highly
accurate predictions of media content preferences or behaviors, but with
little insight on how the model works or why it works. Consequently, issues
emerge due to the opaque and complex nature of these models. For in-
stance, the high complexity of these predictive models results in computing
difficulties in model training, especially with large-scale datasets. Moreover,
these models lose their generalizability because the parameters are often
overfitted for specificmedia consumptionbehaviors and, therefore, can only
be deployed for domain-specific purposes. For instance, a model trained
to predict movie selection on Netflix can hardly be used to predict video
consumption behaviors on YouTube. Even though the underlying media
selection processes are very similar to each other.

These explanatory deficits in predictive models can be addressed by tak-
ing insights fromcognition and communication theories andbybridging the
gap between explanatory methods and predictive methods. In fact, recent
advances in recommendation systems have started to notice the importance
of understanding explanatory mechanisms of media selection behaviors.
For instance, studies have found that the knowledge of the media users’
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surprise and curiosity can help to build a curiosity-driven recommendation
system. Importantly, this model achieves better performance compared to
models that do not account for individual user personality characteristics
(Al-Doulat, 2018; Shrestha et al., 2020). Similarly, evidence suggests that,
when fit with information about emotional features of media content and
media user emotional state, recommendation systems can produce more
accurate and dynamicmusic recommendation effectiveness (Moscato et al.,
2021). These approaches take inspiration from explanatory studies, and lean
into the construction of more elegant predictive models, which results in
better model performance.

In summary, there exists a concurrent communicative gap between
explanatory studies and predictive studies, which share a similar research
interest in investigating media selection behaviors. We argue that both
explanatory research and predictive research can benefit by bridging these
two separate lines of research focuses andmethods, in an age of information
where media consumption data are highly accessible to researchers.

Benefits of Prediction in Media Research

Before we discuss the benefits of predictive models, we want to caution
readers that we are not arguing that explanation is not important anymore.
Instead, we believe that explanation is and should always be the central
goal of scientific media research. But, predictive modeling can and should
complement existing explanatory methods. Why? Combining the two will
help researchers build and test better theory.

First, predictive modeling can help media researchers to improve the
practical implications of their scientific findings (Lin, 2015). Current be-
havioral sciences are deficient in predicting human behaviors (Yarkoni &
Westfall, 2017). Developing predictive models of empirical behavior is of
theoretical importance as it serves as a way to verify the extent to which
a theory truly contributes to advancing knowledge. Communication and
media research also values practical contributions (Krcmar et al., 2016) and
predictive modeling of people’s media selection has real-world industry
applications (e.g., recommendation systems). Recommender systems help
improve people’s lives by introducing people tomedia they are likely to enjoy.
If social scientific contributions can be used to enhance people’s lives, and
predictive modeling helps in this endeavor, then this should be considered
a top priority for the discipline (Lin, 2015).

Second, predictions can help studies avoid replication crises (Open
Science Collaboration, 2015) and p-hacking issues (Simmons et al., 2011)
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through the collection of large-scale datasets, reducing model variance,
and controlling parameter overfitting (Yarkoni & Westfall, 2017). Evaluating
predictive metrics restricts the researchers’ degree of freedom to change
analytical approaches (Yarkoni & Westfall, 2017) and flexibility to accommo-
date explanations after obtaining unsatisfying results (Szollosi & Donkin,
2021). This is because even though p-hacking practices, such as changing
model specification after data collection, could increase explanatory power,
it does not benefit predictive power because it induces model overfitting
issues.

Third, predictions provide principled methods, i.e., measuring predic-
tion accuracy, to distinguish, compare and integrate different theories (Hof-
man et al., 2021), which guides the falsification or updating of theories. As
an example, Peterson et al. (2021) evaluated the existing decision-making
theories based on the predictive performance of the corresponding model
on a large-scale experimental dataset. They identified key problems in the
theory building of previous decision-making research and pointed out new
directions of studies to consider the context of decisions. Combinedwith for-
mal modeling methods (Smaldino, 2017), researchers will be encouraged to
develop integrated theoretical frameworks that generate hypotheses across
diverse domains (Muthukrishna & Henrich, 2019). Especially media selec-
tion research, which is beginning to integrate with the decision-making
literature (Fisher & Hamilton, 2021).

A Note On Effect Size

There is an increasing discussion about the distinction between significant
and substantial (or practical or meaningful) effect sizes (Cumming, 2013;
Funder & Ozer, 2019). One key element of this discussion asks: are small
but significant effect sizes meaningful, and if so, under what circumstances?
In response to this question, researchers are now called on to theoretically
specify the smallest effect size of interest for NHST (SESOI; Lakens et al.,
2018;Weber andPopova, 2012) or region of practical equivalence for Bayesian
analyses (ROPE; Kruschke, 2013). Exactlywhat the SESOI orROPE is depends,
in part, on if an effect size is understood to be cumulative, or not9. Small non-
cumulative effects may not be substantial, whereas small but cumulative
effects may be substantial.

9Cigarette smoking is an often-used example to demonstrate this point. The effect of
smoking just one cigarette on a healthy individual’s mortality is very small and therefore, not
substantial. However, the effect of continuously smoking cigarettes across the lifespan is
cumulative such that smoking has a substantial effect on morality.
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Our project speaks to this discussion. Existingmeta-analytic work shows
that empirical media-selection accuracy varies between r = 0.07–0.24 (Rains
et al., 2018). Our ownmodels of staticmedia selection in this study also show
small empirical accuracies (range = 8.9%–15.3%; Figure 1) when temporal
dependencies in the selection data are not modeled. These small accuracies
hold, even when complex black-box models that should maximize accuracy
are employed. What are we to make of this effect? Is there any evidence of a
cumulative effect?

Our sequential models offer one way of interpreting the effect via com-
parison. Thesemodels show that, evenwhen only the temporal dependency
in the data is accounted for, model accuracy can be improved, and dramati-
cally so (range 9.6%–21.2%; Figures 4 and 5). This means that the prediction
accuracy achieved solely by accounting for the previously selected media
choice (a type of cumulative effect) exceeds both theory-driven and black-
box models of static selection. In summary, by modeling temporal depen-
dencies in our data, we clearly showmedium-to-large cumulative effects,
even in a literature characterized by relatively small static effects. A best
case scenario would combine theoretical variables of interest with temporal
dependency data. To our knowledge, no such dataset exists publicly. We are
currently working to generate such a dataset for evaluating media selection
prediction and explanation.

Limitations

There are a few limitations in our project. First, our empirical studies rec-
ognized high potential predictability andMC prediction accuracy for two
large-scale media selection datasets for music listening and web browsing
behaviors. We expect our findings can be generalized to other types of me-
dia selection behaviors, such as movie selection, video selection or news
selection. However, the actual generalizability of our findings is still un-
known without empirical tests of other types of media selection. Therefore,
we encourage future researchers to consider collecting large-scale media
selection datasets and applying predictive modeling methods to verify the
generalizability of our findings.

Second, we recognize limitations regarding potential influences that
come from algorithmic recommendation systems. Media consumption is
biased by music or video streaming services or the web ranking systems of
search engines, and these biases are difficult to measure without an explicit
knowledge of the recommendation system algorithms. Admittedly, we do
not know to which extent we are predicting people’s autonomous media
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choices or recommendation systems’ choices. Surely we cannot assume that
an individual’s media selection is free of any external influence. However,
we cannot also consider media users as robots who are fully dependent
on recommenders’ decisions, either. Subjects have the freedom to make
higher level decisions and adjust their ownmedia consumption trajectories.
Consider a driver that relies on digital maps recommending driving routes
from home to working locations. The recommendation system might in-
fluence the driver’s driving traces about where and when to make a turn,
but ultimately the driver is deciding the destinations and whether or not to
accept or refuse recommendations. Similarly, media users make free deci-
sions to select lower-ranked media content, skip unfavored video/music,
or to jump out of recommended sessions. Therefore, investigating the pre-
dictability of empirical media consumption trajectories generated by this
hybrid decision-process between media users and the recommendation
systems is an important step to initiate the line of research explaining peo-
ple’s autonomous decisionmechanisms and their underlying motivation
under algorithmic influences (Kleinberg et al., 2022).

Moreover, the current study offers empirical implications for studies in-
terested in real-life media selection behaviors. Media scholars, or generally
social scientists, need to accept the fact that nowadays people’s behaviors
are highly influenced by algorithms, and discover ways of studying algorith-
mic influence (e.g., Hilbert et al., 2019). Ignoring this algorithmic influence
or subtracting human behaviors from environmental influences might in-
duce unrealistic inferences or predictions for real-life behaviors, which is a
deviation from one of the core goals of social sciences, that is to understand
human behaviors or social dynamics in the real world.

Finally, and unlike other published projects investigating sequential be-
havior in non-media use contexts, we found that the order oneMCmodel is
incapable of providing sufficient prediction accuracy relative to the poten-
tial predictability for media behaviors, and the current study is limited to
offer a satisfactory explanation for why. Indeed, the MCmodel is a simple
data-driven predictivemodel which only uses one previously consumedme-
dia content to predict one future media content. Possible additional factors
for future studies to consider include: (1) people’s individual differences and
temporary mental states (e.g., mood); (2) the affective or cognitive features
of media content (e.g., emotion, novelty, morality, etc.); (3) a reinforcement
learning decision mechanism, where people adjust their future media se-
lection based on feedback of previous media choices in a way such that
people reinforce high-rewarding media choices and avoid low-rewarding
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media choices. We anticipate these directions will help future researchers
to improve the prediction accuracy and help us better understandmedia
behaviors (for an extended discussion, see Gong and Huskey, in press).

Conclusion
How and why people select media has been a major source of theoretical
inquiry since the 1940s. Numerous theoretical accounts exist including, but
not limited to, MoodManagement Theory (Zillmann, 1988), selective expo-
sure (Knobloch-Westerwick, 2014), uses and gratifications (Rubin, 2009), and
so on (for a review, see Hartmann, 2009). Typically, media selection theories
explain rather small effect sizes (Rains et al., 2018). Said differently, most
of our current theories have very low explanatory accuracy and therefore
they also have low prediction accuracy. Our current results suggest that it
should be possible, in principle, for theories of media selection to explain
substantial variance in people’smedia selection behaviors. Our results point
to a promising path forward. Most media selection theories are primarily
focused on individual and media characteristics and theorize that selection
is often driven by an interaction between the two.

In our sequential selection studies, even though we know nothing about
the individual, and little about the media (beyond listening frequency and
listening order), we show that it is nevertheless possible, in principle to
predict 60–80% of people’s media selection behavior. As the old adage goes,
past behavior is a strong predictor of future behavior. Our research shows
that media researchers would do well to remember that in their theorizing.
With that said, one limitation of our approach is that it is rather silent when
it comes to explainingwhy these particular patterns exist. This represents a
fundamental challenge to media researchers; that is, developing theoretical
why explanations that offer sufficient explanatory power to capture the high
predictability (in principle) of media selection.
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