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Charting a future for fMRI in communication science
Benjamin O. Turnera, Richard Huskeyb, and René Weberc

aWee Kim Wee School of Communication and Information, Nanyang Technological University, Singapore, Singapore;
bSchool of Communication, The Ohio State University, Columbus, OH, USA; cDepartment of Communication, UC
Santa Barbara, Santa Barbara, CA, USA

ABSTRACT
Neuroscientific investigations into communication phenomena using func-
tional magnetic resonance imaging (fMRI) are becoming increasingly pop-
ular in communication science. This presents opportunities for new
discoveries, but also for the rapid spread of questionable practices. Here,
we look to the future of fMRI in communication science: first, highlighting
and advocating for several relatively new methods that should enable
communication scholars to address novel research questions; and second,
pointing out various controversies or pitfalls that exist in the use of several
of the more widely used fMRI analysis methods within the field. Given the
rapidly changing nature of the fMRI analysis landscape, such reflection is an
essential part of being a good scholar in this domain. Our aim is to ensure
that the future of fMRI in communication science is healthy, robust, and rich
in variety, by encouraging all researchers in the field to think critically about
the methods they use, whether that means adopting new analysis methods
that can answer previously unanswerable questions, or adjusting their use
of methods they already use to align with the latest recommended
practices.

Introduction

Despite having existed for just over a decade, the still-young field of communication neuroscience is
establishing itself as a full-fledged domain that complements more traditional communication
research. A number of recent developments, including special issues on the topic (Afifi & Floyd,
2014; Weber, 2015a, 2015b) and the creation of an interest group at the International
Communication Association that explicitly encompasses neuroscientific methods (namely, the
Communication Science and Biology group; see also Floyd & Weber, 2018), are a testament to
this emergence. With the field on an upward trajectory, but still small enough to be steerable, this
article moves beyond the sorts of gentle introductions and defenses of the approach that have come
previously (e.g., Weber, Mangus, & Huskey , 2015; Weber, Fisher, Hopp, & Lonergan, 2017), and
instead focuses squarely on the future of the field. We do this in two ways: first, by providing details
on some of the functional magnetic resonance imaging (fMRI) analytic techniques or approaches
that we anticipate gaining traction in the field within the next several years; and second, by taking
stock of new challenges that have been identified in the use of analytical methods in fMRI that are
already widespread, with the goal of ensuring that the field is built on a strong foundation that will
last well into the future.

We presume that readers are familiar with the basics of fMRI, either because they or their
collaborators use it themselves, or from having read the aforementioned introductions. Of course,
readers need not be familiar with every method we discuss (in fact, we assume some methods will be
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new to many readers). However, we err on the side of providing greater technical detail where
possible, so a reader with no background in fMRI (for instance, someone reviewing a paper where
one of these methods was employed and looking here for a primer) may be overwhelmed by some of
the jargon. Such a reader is strongly encouraged to read the two publications mentioned above
before reading the present article (and for those looking for an even more detailed introduction to
fMRI, we recommend the text by Ashby, 2011). On the other hand, we hope that even advanced
readers will find useful information here—if nothing else, from the parallels we draw with other
fields using fMRI. As these readers will surely be aware, cognitive neuroscience is in the midst of a
self-correction period, with papers challenging various statistical (e.g., Eklund, Nichols, & Knutsson,
2016; Westfall, Nichols, & Yarkoni, 2017) or methodological (e.g., Carp, 2012; Poldrack et al., 2008)
aspects of fMRI analysis, as well as pointing out the widespread lack of power (and therefore,
replicability) that plagues most fMRI studies (Button et al., 2013; Cremers, Wager, & Yarkoni, 2017;
Szucs & Ioannidis, 2017; Turner, Paul, Miller, & Barbey, 2018), appearing almost monthly. Due to its
relatively more recent emergence, as well as the richer (i.e., more naturalistic) stimuli often used,
communication neuroscience has the opportunity to avoid many of these problems, and to comple-
ment the simpler paradigms common in cognitive neuroscience (Huk, Bonnen, & He, 2018).

The present article is organized into two halves around the two future-focused aspects mentioned
above, namely introducing analytical methods which are less widely used presently, or critically
examining those that are more established. Each half is further subdivided into three sections,
corresponding to three classes of fMRI analysis methods, depending on whether they are designed
to assess functional activity, functional connectivity, or inter-individual/-group patterns. Note that
although the lesser-known analytical methods are generally newer, we do not mean to imply that
they will replace the more established methods. Even within a category, different analytical methods
are best for answering different sorts of questions, and we anticipate that all of these analytical
methods (as well as many we do not discuss here) will coexist going forward. Instead, our focus is
slightly different for each half: for the lesser-known analytical methods, we introduce each method
and some of its most noteworthy variants or extensions, and also detail the assumptions and
limitations of each method, while for the established analytical methods, we largely forego the
introduction and focus on outstanding challenges or questions around the use of each method.
We conclude with a summary of where the field currently stands, and where we hope to see it go in
the next several years.

Overview of classes of analysis methods

The three classes of analysis methods that are considered here will no doubt be familiar to readers
with fMRI experience, but in order to clarify our terminology, we will briefly describe each class here
(although we leave a description of the specific methods we consider until later), and will also
provide a unifying example from the communication literature to further elucidate what sorts of
questions each class might be used in addressing. The first class of analysis methods includes those
concerned with Functional Brain Activity. This class of analysis methods, which aim to identify
where (and possibly when) activity in the brain occurs, is used in a majority of fMRI papers. It is
exemplified by the convolution-based general linear model (GLM; Friston et al., 1994), which, owing
to its ubiquity, we do not consider further here (although note that “GLM” is often used in other
fields to mean “generalized linear model,” and moreover that many other fMRI analysis methods in
fact use general or generalized linear models, but that “GLM” almost always refers to this specific
application within the field of fMRI). Frequently, this class of analysis methods is based on
subtraction logic, i.e., the assumption that cognitive processes summate linearly, and that construct-
ing contrasts between conditions that are thought to differ in terms of a single process of interest will
yield an understanding of that process.

The second class of analysis methods includes those based on assessing or interpreting Functional
Connectivity, rather than mere activity—that is, how different areas in the brain communicate with
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one another. The recent rapid growth of this class of analysis methods has largely been a product of a
shift in the field of cognitive neuroscience from focusing on specific brain regions, to instead
conceptualizing the brain as a set of interacting networks (Friston, 1994; Medaglia, Lynall, &
Bassett, 2015; Sporns, 2011). Analytical methods for assessing functional connectivity allow research-
ers to begin to understand how these brain networks operate. There are a number of analytical
methods for assessing functional connectivity—in fact, more than 40 different approaches exist
(Wang et al., 2014)—but most of these are ill-suited to the sorts of paradigms used most widely in
communication neuroscience.

We label the final set of analysis methods we consider here as Synthetic Analysis Methods. These
are not tied to a particular procedure or modality, but instead, are higher-order analyses that can be
applied across multiple domains. That is, in general, these approaches take the outputs of other
analysis methods, including from the classes described above, as their inputs. Because of their focus
on extending beyond the organization or function of the brain (which, to be clear, is a focus that can
be useful to communication scholars, especially given that studies related to brain function lay the
foundation for synthetic analyses) and their potential applicability, the analysis methods in this class
may ultimately be of the greatest interest to communication researchers.

Having broadly laid out the classes of analysis methods we consider in this article, we now
introduce an example framework that we will use throughout in order to demonstrate how each
analysis method can be employed to address communication-relevant questions. Our general
theoretical domain will be persuasion, in particular in the context of health communication through
use of public service announcement (PSA) campaigns. Because the examples for some analysis
methods come from our own studies, we also describe some of the theoretical background that
underpins this research program—but of course, this is not an empirical paper, so we will gloss over
most of the details.

Example: Using fMRI to study persuasion

The framework in which we consider persuasion comes from several well-known communication
theories, chiefly including the limited capacity model of motivated mediated message processing
(LC4MP, Lang, 2000; see also Fisher, Huskey, Keene, & Weber, 2018; Fisher, Keene, Huskey, &
Weber, 2018), as well as the elaboration likelihood model (ELM, Petty & Cacioppo, 1986), and the
activation model of information exposure (AMIE, Donohew, Palmgreen, & Duncan, 1980). These
models all make predictions about how various message features should affect individuals’ attitudes,
beliefs, and behavior (Weber, Westcott-Baker, & Anderson, 2013). Two of these features are the
argument strength (AS) of a message, and the arousingness of a message, which is often operatio-
nalized using message sensation value (MSV). One simple way in which messages’ putative impact
can be operationalized is to ask viewers to provide ratings of perceived message effectiveness (PME),
although the ideal of course is to observe the actual changes in behavior as a consequence of effective
persuasive messages. Although these theories do not make reference to brain regions, several brain
regions, including the media prefrontal cortex (mPFC) and the dorsolateral prefrontal cortex
(dlPFC) within the middle frontal gyrus (MFG) among others, have been empirically implicated
repeatedly in linking persuasive message processing to attitudinal and behavioral change (e.g., Chua,
Liberzon, Welsh, & Strecher, 2009; Falk, Cascio, & Coronel, 2015; Huskey, Mangus, Turner, &
Weber, 2017; Weber, Huskey, Mangus, Westcott-Baker, & Turner, 2015). By dint of their frequent
association with persuasion, these regions will be mentioned several times in our examples through-
out the article.

To demonstrate how we will use this study domain to illustrate the analytic methods described
below, we provide here an example analysis for each of the three classes described at a high level of
abstraction—that is, without specifying any particular analysis at this point. A typical analysis in the
Functional Brain Activity class might ask the degree to which messages—for instance, in the form of
PSAs—with differing AS produce differential activity within the persuasion-related brain regions
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mentioned above. An analysis focused on Functional Connectivity might hypothesize that ads with
high MSV—i.e., those with lots of movement, rapid scene cuts, and so forth—will disrupt processing
by entraining activity between areas of the brain involved in visual processing and those involved in
allocating attention (i.e., such that the visually evoked activity cascades along to attentional areas and
drives activity in those areas in a way that inhibits deeper processing). Finally, a Synthetic Analysis
Method might entail integrating message features and brain activity in (or connectivity between) key
regions implicated in valuation and self-referencing such as the mPFC in order to predict which ads
will be most effective in producing behavioral change, and for which individuals. With this exemplar
framework set up, we now turn to the analysis methods themselves.

Emerging Analytical Methods

In this section, we introduce three methods—one for each of the categories described above—that, to
this point, have been used at most rarely within communication neuroscience. Our aim is to provide
readers with an understanding of what the analysis method is meant to accomplish, how it works,
where they can find the detailed information needed to actually implement it, and some of the most
common ways in which it can go wrong.

Functional brain activity: multi-voxel pattern analysis (MVPA)

Overview
In contrast to most other methods for identifying brain activity such as GLM and intersubject
correlation analysis (ISC; described in detail later), which consider each voxel or brain region
independently, multivariate methods such as multi-voxel pattern analysis (MVPA) are based on
combining information across multiple voxels (Davis & Poldrack, 2013). Moreover, the philosophy
underlying MVPA is fairly distinct from that underlying the GLM. This is because MVPA grew out
of a machine learning framework, and is not based on subtraction logic. Instead, MVPA assumes
only that different processes or classes of events should be separable when viewed in an appropriate
representational space. In other words, the basic question asked by MVPA is: in a given set of voxels,
do the patterns of activity for one class of events differ reliably from some other class or classes?
Moreover, far from being a replacement for univariate methods, there is evidence that the informa-
tion revealed by univariate and multivariate analyses may in some cases be orthogonal, which is
consistent with the evidence supporting both localized and distributed organizations of function
within the brain (Haxby, Connolly, & Guntupalli, 2014; Kanwisher, 2010).

In the context of our running persuasion example, MVPA might be used to understand the role
that emotional processing plays in (persuasive) ad perception. For instance, a researcher might take a
low-cost (cognitively speaking) real-time measure of ad perception by asking participants to press
one button during the ad any time they heard a statement with which they agreed, and a second
button whenever they heard a statement with which they disagreed. Using these button presses
(possibly combined with content analysis of the ads to align the responses with spoken content),
MPVA techniques could be used to discover whether activity in a part of the brain previously
demonstrated to be involved in emotional processing differed between agreed- and disagreed-with
statements—and, moreover, could even be used to generate estimates of the strength of agreement
for each specific statement (by examining the raw classifier outputs).

Implementationally, MVPA starts by generating estimates of the unique brain activity associated
with every instance of every class of events of interest for every voxel in the brain. The predominant
approaches for generating these estimates are special cases of the GLM, and typically return an
estimate of the activity associated with each unique stimulus, as either a scalar value (Mumford,
Turner, Ashby, & Poldrack, 2012) or a temporal vector (Turner, Mumford, Poldrack, & Ashby,
2012). That is, returning to our persuasion example, the traditional GLM approach would yield a
single regression estimate reflecting the mean activity across all stimuli associated with either
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agreement or disagreement. By contrast, instance-wise methods such as MVPA will yield an estimate
for every unique presentation—so if there are ten agreed-with statements presented during a scan,
there will be ten estimates (per voxel), one for each of those ten statements.

The next step in an MVPA analysis is to use these instance-wise estimates to train a pattern
classifier (e.g., naïve Bayes, Fisher’s linear discriminant, or support-vector machine/SVM) to distin-
guish between two or more classes (see, e.g., Misaki, Kim, Bandettini, & Kriegeskorte, 2010; Mitchell
et al., 2004; Pereira, Mitchell, & Botvinick, 2009). Briefly, voxels form the dimensions of a repre-
sentational space, and each stimulus instance is a point in this (typically high-dimensional) space.
The pattern classifier attempts to find a boundary (called a hyperplane for dimensionality greater
than three) that separates the stimulus instances of one class from those of the other(s). The measure
of interest in these analyses is generally whether out-of-sample classification accuracy is above
chance (which can be assessed using the PyMVPA toolbox, which can also be used to fit these
models, among other utilities; Hanke et al., 2009). For instance, in our example of discriminating
agreed- and disagreed-with statements in an emotional processing region, above-chance accuracy
would indicate that the representation of these classes of statements differed within this region.
Although this is a similar interpretation as might be obtained from a contrast using the GLM, MVPA
can detect discriminative information in situations that thwart the GLM, for instance when informa-
tion is encoded in a pattern across multiple voxels within the same region and is therefore lost in a
subtraction-logic analysis, or when various assumptions of the GLM are violated, (e.g., assumptions
of homogeneous variance or linearity of response, depending on choice of classifier).

Assumptions and pitfalls
Probably the most substantial pitfall of these methods is their power and flexibility. Without
appropriate cross-validation—that is, testing the classifier on observations that have not been used
for the model’s estimation—classification accuracy is typically near 100%. Given the number of
hyperparameters involved in many classifiers (e.g., bias and slack parameters using a SVM classifier),
researchers must be cautious to avoid circularity and overfitting. In fact, overfitting is such a serious
issue in pattern classification research that much of the work in the engineering and statistical fields
responsible for developing these methods goes towards techniques for minimizing overfitting. In the
extreme, a whole-brain classifier will have on the order of 100,000 dimensions, which are used to
predict on the order of 100 items. As described above, while the technical details differ, this is
analogous to fitting a regression on 100 observations using 100,000 predictor variables; except in
very special cases, a perfect fit is mathematically guaranteed. Researchers should therefore be
cautious in eagerly adopting some of the most powerful classification techniques—nonlinear classi-
fiers, boosting/bagging, and the like—which are developed for the purposes of maximizing predic-
tion accuracy while sacrificing interpretability (and which are often designed for classification
problems with substantially different features than MVPA).

Another problem involves feature selection (i.e., choosing which voxels are included in the
MVPA). Rather than select features that are discriminative in a univariate analysis or that have
strong weights in an initial MPVA, features should be chosen in a way that is blind to the outcome,
which typically means either using a priori ROIs or carrying out a whole-brain analysis (potentially
with dimensionality reduction such as PCA to partially ameliorate the “curse of dimensionality”).
Taken together, the current best-practice pipeline involves using a classifier like a linear SVM,
running hold-one-run-out cross-validation (which necessitates the collection of multiple runs; see
also Mumford, Davis, & Poldrack, 2014), fixing hyperparameters at reasonable values (referring to
the literature for guidance), choosing features in a non-circular way, and assessing classification
accuracy significance using nonparametric tests (e.g., a permutation test, Golland & Fischl, 2003).

Variations and extensions
One popular method closely related to MVPA is representational similarity analysis (RSA;
Kriegeskorte, Mur, & Bandettini, 2008). Like MVPA, RSA starts with per-instance activity estimates.
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However, rather than fitting a classifier to find a separating hyperplane as in MVPA, RSA embeds all
of these estimates in a similarity (or equivalently, distance or dissimilarity) matrix. That is, the
activation pattern within an ROI for each stimulus instance is statistically compared with the pattern
for every other instance (exactly as in the first step of multidimensional scaling). The real power of
RSA comes from the next stage of analysis, in which this neural similarity matrix is compared against
similarity matrices derived from other sources, either from other brain activity data (for instance,
from implanted electrodes), or more relevant for communication scholars, from a theory or
computational model. For instance, returning to the running example of persuasion, a published
study used RSA to relate several different features of anti-smoking ads to behavioral outcomes
(Pegors, Tompson, O’Donnell, & Falk, 2017). In particular, Pegors and colleagues compared the
matrix of how similar the brain activity pattern evoked in mPFC by a series of graphic ads was to
predictions made on the basis of features such as valence (which would predict high similarity for
pairs of ads with a similar valence and low similarity for pairs with opposite valences) and social
content (ads with social content would be similar to one another, as would those without, with low
similarity between the two categories). They found a strong relationship between how well the social
feature predicted the observed neural similarity within each individual, and the individual’s beha-
vioral change. In contrast, returning to the idea that multivariate and univariate methods provide
complementary information, univariate measures in this same brain region linked the amount of
negative valence in the ads to behavioral change.

Another related approach involves the use of encoding models (Kay, Naselaris, Prenger, & Gallant,
2008; Naselaris, Kay, Nishimoto, & Gallant, 2011). Briefly, encoding models begin with the collection
of large amounts of data, typically during quasi-naturalistic viewing conditions. The stimuli are
themselves characterized along a large number of dimensions—everything from low-level decom-
position of the images themselves using Gabor filters, to semantic- or content-level representations
(Huth, Nishimoto, Vu, & Gallant, 2012)—and these characterizations are used to identify which
voxels respond to which dimensions. Encoding models have been employed extensively with stimuli
that are very relevant to communication researchers, such as movie clips (Nishimoto et al., 2011).
Indeed, by reversing encoding models, it is (theoretically) possible to decode brain activity, a process
often referred to by the popular press as “mind-reading.” Such claims are now somewhat premature,
but this is an area of active development.

Functional brain connectivity: graph theoretic analyses

Overview
Graph theory is not itself a method of measuring functional connectivity, but instead, represents an
approach for interpreting the results of functional connectivity analyses. Graph theory is a field of
pure mathematics that is used to describe the properties of various classes of networks. Indeed, graph
theory is relatively widely used in communication, particularly in the study of social networks (Bond
et al., 2012; Huskey, Wilcox, & Weber, 2018; Eagle, Pentland, & Lazer, 2009; Monge & Contractor,
2003; Weber, Alicea, Huskey, & Mathiak, 2018). In the case of functional connectivity, graph
theoretic methods can be applied to abstract results away from, say, the connection between a single
pair of brain regions, to the system-level properties of an entire network. For example, a basic
functional connectivity analysis might report how the connectivity between the mPFC and ventral
striatum (which is involved in reward processing) changes as a function of subjective-valuation
during media exposure. A graph theoretic approach would examine the entire network to which
those brain regions belong (for instance, an affective or valuation network) and describe how
efficiently information can flow through the entire network as a function of attention.

For interested readers, we recommend Newman (2010) as an introductory text (for more technical
treatments, see Fornito, Zalesky, & Sporns, 2016; or Bassett & Sporns, 2017). In general, graph theoretic
analyses begin with a connectivity matrix quantifying the strength of connection between each ROI (or
voxel) and every other ROI. In the terminology of graph theory, this is known as an adjacency matrix.
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Each region that comprises this matrix (i.e., the entities that define the rows/columns of the matrix) are
referred to as nodes, while the connectivity values themselves reflect the strengths of the edges between
these nodes. Often, the adjacency matrix (or graph) is thresholded such that connections below a certain
value are zeroed out, while those above are left intact (a weighted graph) or binarized (an unweighted
graph). On the basis of the resulting sparse graph, a multitude of summary statistics can be computed to
capture various aspects of the organization of the graph. As a concrete example, one widely used graph
theoretic measure is the characteristic path length; this measure begins by computing the minimum
number of nodes that must be traversed to get from each node to each other node, and then averaging
across all pairs of nodes. This measure is abstracted away from the spatial location of nodes, but indexes
something about how efficiently information might travel within this network.

A published example in the domain of persuasion comes from Cooper, Bassett, & Falk (2017). In
this work, the authors examined a property related to the cohesiveness of the regions belonging to a
set of putative a priori networks. After carrying out their graph theoretic analysis from data collected
during an ad-rating task using graphic anti-smoking ads, they had a scalar value for each of four
networks of interest (such as the frontoparietal control network, which is implicated in cognitive
control and higher-order goal directed behavior) for every individual, which they could then relate to
various measures of behavior change. Their results showed that this graph theoretic property in
several networks, including the frontoparietal control network (which includes the dLPFC) was
related to individuals’ intention to quit, and also demonstrated that a related property in mPFC
predicted actual behavior change.

Assumptions and pitfalls
As with other methods discussed herein, the time series data used in a graph-theoretic analysis must
undergo fairly standard pre-processing. However, a number of additional decisions need to be made.
First among them is how to define the nodes of the network. Several anatomical atlases exist (e.g.,
Harvard-Oxford), but these are highly variable in node-size and the nodes themselves are often
involved across a number of psychological processes and brain networks (that is, the nodes are not
coherent with respect to their cognitive or neural functions; but see Van Essen, 2005). As a solution,
most researchers in this area use functionally defined atlases, which are well-suited for group
analyses and are functionally coherent. However, the decision on which functionally defined atlas
to use is non-obvious, as options exist that parcellate the brain into, for example, 50, 90, 164, 200,
264, or 1000 nodes (Craddock, James, Holtzheimer, Hu, & Mayberg, 2012; Power et al., 2011; Shirer,
Ryali, Rykhlevskaia, Menon, & Greicius, 2012). In addition to these functionally defined networks,
communication scientists may have specific hypotheses about the networks involved and therefore
wish to use a set of network-specific nodes for their analysis, typically as defined using meta-analyses
(e.g., Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011).

A second issue comes with defining what constitutes a meaningful edge. As discussed above, most
analyses require a sparse network graph, which is usually accomplished by setting a threshold value
for connections between nodes in the network. While no standard has been established, a common
convention for whole-brain parcellations is to retain a proportion of the connections as determined
by connectivity strength. Additionally, while weighted directional graphs are possible in principle
(i.e., edges have a directionality and magnitude specifying how information flows from one node to
another, rather than just between the two), most current graph-theoretic applications to fMRI data
are usually accomplished on binary undirected graphs. In such instances, important information
about magnitude and directionality of connectivity between nodes in a network is lost.

A final consideration on statistical inference is worth noting. Many graph-theoretic measures
result in scalar values (e.g., a graph’s characteristic path length is a single number). The most
common approach (although far from the only one; see Butts, 2009) to combining across individuals
is to calculate graph-theoretic statistics on a group-level adjacency matrix (since there is likely to be
considerable noise in each individual subject’s sparse graph). Under such circumstances, the ques-
tion of what constitutes an appropriate null-model for a group-level graph metric is non-trivial. The
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current best-practice is to generate random models where edges are randomly determined while
preserving the overall size and degree of the network (Maslov & Sneppen, 2002). However, there are
a variety of solutions that are more or less appropriate for different analyses, and no current gold
standard exists (see, e.g., Rubinov & Sporns, 2010; Sizemore & Bassett, 2017; Zalesky, Fornito, &
Bullmore, 2012). The current best-practice pipeline is to pre-process fMRI data without spatial
smoothing (Alakörkkö, Saarimäki, Glerean, Saramäki, & Korhonen, 2017), form a group-level
adjacency matrix from the Pearson correlation coefficients of the detrended neural timeseries from
each ROI in a functionally defined atlas (e.g., Power et al., 2011), apply multiple thresholds to this
matrix (as graph theoretic statistics can vary by threshold), calculate the relevant graph theoretic
statistic for each threshold, calculate the same statistic on null adjacency matrices at each threshold
(e.g., Hirschberger, Qi, & Steuer, 2007; Maslov & Sneppen, 2002), and evaluate significance using
non-parametric methods (Snijders & Borgatti, 1999) while being sure to account for inflated family-
wise error rates (e.g., by applying a false discovery rate correction).1

Variations and extensions
The procedures described above characterize static graphs, while recent developments have extended
these approaches to investigate network dynamics (Sizemore & Bassett, 2017, Telesford et al., 2016)
—in fact, the graph-theoretic example from Cooper et al. (2017) given above used just such a
dynamic approach. The main advance in using dynamic analyses is the ability to characterize
changes in network properties over time. This has clear implications for communication scientists,
who are often interested in the ways in which communication dynamics shape behavior and message
processing. More broadly, these dynamic approaches may drive considerable advances across a
number of core communication questions (Falk & Bassett, 2017), although possibly because they
multiply the number of tests or subdivide the data, there are also questions regarding their reliability
relative to static methods (Zhang, Baum, Adduru, Biswal, & Michael, 2018).

Synthetic analysis methods: individual differences

Overview
Generally, the above-discussed methods treat individuals as interchangeable (although not always;
for instance, both published persuasion examples described above made predictions on a per-
individual basis). In some cases, this assumption is relatively defensible: for instance, aside from
differences in anatomical structure, brain activity associated with making a simple motor action is
fairly consistent across individuals. However, particularly in the case of naturalistic, higher-order
stimuli of the sort that are often employed in communication neuroscience, any two individuals’
brain responses are likely to differ substantially. Indeed, even in the relatively controlled domain of
simplistic cognitive tasks, previous research has shown that differences between individuals perform-
ing the same task surpass the differences observed within an individual performing different tasks
(Miller et al., 2009); in a more communication-relevant paradigm in which participants listened to
long-form stories, activity patterns unique to the individual explained roughly twice as much
variance as activity patterns common across individuals (both of which swamped the variance that
could be attributed to a specific stimulus; Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016).
However, these differences are also not random noise, but are instead explainable in ways that
illuminate the underlying stimulus feature space (Van Horn, Grafton, & Miller, 2008) and can speak
to theoretical questions (Vogel & Awh, 2008).

The simplest and most widely used approach to studying individual differences in fMRI typically
entails relating a single neural measure (e.g., average brain activity in a given brain region) to a single
individual difference factor (e.g., educational attainment) by means of a simple correlation (Dubois

1For example code using this pipeline, see the Open Science Framework page associated with Huskey, Wilcox, & Weber (in press)
https://osf.io/uf5zw/.

8 B. O. TURNER ET AL.

https://osf.io/uf5zw/


& Adolphs, 2016), and can potentially be extended to an applied or translational context (Gabrieli,
Ghosh, & Whitfield-Gabrieli, 2015; Seghier & Price, 2018). We have already described two examples
of individual-focused analyses in the context of persuasion; Pegors et al. (2017) used standard linear
regression models to relate their RSA-derived measures to behavioral outcomes, while Cooper et al.
(2018) related their graph-theoretic measures to behavioral intentions and outcomes using robust
regression.

Assumptions and pitfalls
Because individual differences approaches are fundamentally correlational, the standard qualifica-
tions regarding correlational research apply: in particular, ascribing a relationship to any measured
variable (implicitly, in favor of any other unmeasured variable) is inappropriate, and causal claims
need to be made cautiously, if at all. Additionally, the simple approach described above suffers from
two further limitations. First, it is not designed to accommodate inherently multivariate data, for
instance, brain activity maps or activity timeseries, for example in response to an anti-drug
PSA. Second, it is often prone to abuse by way of (uncorrected) multiple comparisons, for instance
when running a separate correlation or regression for each outcome measure or using the neural
measures from each of a series of ROIs. Ultimately, this approach is limited when it attempts to
reduce an individual to one or a small number of features, and ignores all of the other features that
might be covariates or confounds. Best practices for this approach include ensuring a sufficient
sample size, controlling for multiple comparisons appropriately (preferably by including all measures
of interest in a single model—if degrees of freedom are an issue, running multiple models is not an
appropriate solution), avoiding circularity in reporting statistics related to the magnitude or sig-
nificance of the effect (e.g., Vul, Harris, Winkielman, & Pashler, 2009; although cf. important
counterpoints to that report, e.g., Yarkoni, 2009, or Lieberman, Berkman, & Wagner, 2009), and
limiting conclusions regarding the sensitivity and specificity of any putative relationships to the
scope supported by the specific analysis conducted.

Variations and extensions
There is a second approach to studying individual differences in fMRI, which is essentially iso-
morphic with the RSA approach, except that whereas RSA operates on matrices of similarities
between stimuli, the similarity-based approach to individual differences operates on matrices of
similarities between participants (Miller, Donovan, Bennett, Aminoff, & Mayer, 2012; Miller et al.,
2009). For instance, given spatial patterns of brain activity associated with a particular process (say,
persuasive message processing) within a particular brain region for each of a number of individual
participants, the similarity-based approach would first compute the similarities among these patterns
of brain activity to construct an individual-to-individual similarity matrix. Then, these individuals
would be characterized in terms of the similarities along a number of other dimensions, such as trait
empathy, need for cognition, personality traits, and so forth, in each case yielding a new similarity
matrix specific to that domain or measure. Finally, the neural similarity matrix would be regressed
on the full complement of similarity matrices for the other dimensions, and the results would
indicate how all of these individual difference factors relate to brain activity similarity (see also
multivariate distance matrix regression, Anderson, 2001). Typically, to assess significance, variables
(or groups of variables) are added to the model sequentially or in a round-robin procedure in order
to be able to ascribe unique explanatory power to each variable relative to a set of logically “lower-
order” or nuisance variables.

As with the distinction between RSA and MVPA, this approach to individual difference analyses
can be used to address the same sorts of questions as the simpler approach described above.
However, because this approach abstracts representations away from the original units (whether
that is neural activity, graph theoretic measures, personality scale scores, or behavioral performance)
into a similarity space, it simplifies testing for isomorphisms that may be impossible to detect
otherwise. For example, considering the many ways in which mPFC has been implicated in behavior
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change, an individual difference analysis of this sort might start with similarities between individuals
in terms of various task-independent (i.e., trait) measures, such as need for cognition or personality,
and test how similarity on various outcome or performance measures (such as behavior change,
intention to quit, or ratings of the ads) was mediated by similarity across a number of neural
measures for the mPFC (e.g., how similar RSA matrices were between individuals, how similar the
mean pattern of brain activity was for a particular contrast, or how similar the brainwide con-
nectivity pattern with mPFC was). Combining across all of these domains and measures, many of
which are highly multivariate (such as the brainwide connectivity pattern), would be impossible
using the simpler approach, but is natural using this approach.

Challenges with established fMRI analyses in communication science

As we have previously mentioned, there are a number of fMRI analyses that are already fairly
commonly used in communication neuroscience, and with which we presume most researchers
working in this area are familiar. However, even though these analytical procedures are more
widespread in the field than the new wave of analyses we described above, this does not mean
that there is a uniform process for applying each, nor that there are no outstanding statistical
questions in their application. We emphasize that this is not a criticism of any of these analyses, but
a call for researchers to continue grappling with these difficult questions, for the good of the field.
We argue that such critical thinking is essential for the survival of these analytical approaches in
communication neuroscience—and, indeed, perhaps for the long-term survival of communication
neuroscience itself.

Functional brain activity: intersubject correlation analysis

Intersubject Correlation (ISC; Hasson, Nir, Levy, Fuhrmann, & Malach, 2004) is an analytical
method for detecting brain activity that, unlike the GLM or MVPA/RSA, requires virtually no
knowledge of stimulus timing (see also Hejnar, Kiehl, & Calhoun, 2007). The basic principle
underlying this method is simple: the degree to which the temporal pattern of brain activity in
response to a common input is similar across individuals can serve as an index of task-related brain
activity. In its simplest form, similarity between individuals’ brain responses can be computed by
taking the Pearson correlation between the voxel time series data for every pair of participants, and
by then aggregating these voxelwise correlations across all pairs of participants. It is this computation
from which the method derives its name.

At a minimum, using ISC requires participants to have received the same stimulus. This does not
necessarily mean that the entire scan must be identical for every participant—for instance, if
participants view a series of 30-sec ads, those ads themselves can appear in a random order for
each participant—but it rules out some experimental paradigms, e.g., video-game playing (where
each participant will experience a unique stimulus based on his or her actions during the game).
More subtly, ISC does not detect neural activity like a GLM analysis. Instead, ISC is focused on
characterizing the processes that are common across participants. Thus, if two participants process
the same stimulus differently—e.g., given an ad warning about alcohol abuse, one participant might
recall fond memories of past parties, while a second participant might be reminded of the loss of a
family member to an accident involving a drunk driver—ISC will be unable to detect anything
related to those divergent processes (although it will likely still detect common activation in lower-
level regions like primary visual cortex).

There are also a number of statistical difficulties associated with ISC. Researchers should be
cautious when making parametric assumptions regarding the standard error of the mean ISC (i.e.,
the mean of all pairwise between-participant similarities) because of severe violations to assump-
tions of independence: in an ISC matrix, each participant’s data has an effect on the pairwise
ISCs with all other participants, and this leads to dependencies in this ISC matrix. Even one
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outlier can severely bias all other ISCs. Recently, Chen and colleagues published some promising
work aiming to solve the problem of how to specify the standard error of an ISC matrix with
inherent dependencies, but this solution will need to be validated thoroughly (Chen, Taylor, Shin,
Reynolds, & Cox, 2017). Until this novel solution is validated, the state-of-the art for partly
overcoming (but not solving) this issue is to generate randomly varying temporal offsets for the
empirical time series data, calculate ISCs, and to treat the resulting “random ISCs” as a simulated
“null” distribution (for a toolbox see Kauppi, Pajula, & Tohka, 2014; and for a modern example,
see Herbec, Kauppi, Jola, Tohka, & Pollick, 2015).

Additionally, it is not straightforward to map ISC results to constituent processes. In some cases,
this is not a problem. For example, if two sets of ads which differ along a defined theoretical
dimension (e.g. MSV) are analyzed independently and shown to result in consistently different ISCs,
then it may be possible to make statements relating that theoretical dimension and the observed
patterns of differential ISCs. In contrast, if a researcher presents participants with a single movie clip
and analyzes it with ISC to produce a single map, it is not trivial to determine what aspects of the
movie are associated with the observed ISCs. Therefore, it is important that ISC analyses are either
accompanied by theoretical considerations from which stimulus conditions can be derived, or that
ISC analyses are augmented by event related content analyses of the stimulus material (Grall &
Schmälzle, 2018; Weber, Ritterfeld, & Mathiak, 2006).

Finally, when ISC analyses refer to ROIs, it is important to consider how to aggregate ISCs within
each ROI. There are two procedures: (1) one can compute voxelwise pairwise ISCs and then average
those ISCs for all voxels within target ROIs; or (2) one can first average all voxelwise time series
within ROIs, i.e., obtain one average time series for each ROI, and then compute ISCs for all target
ROIs. The reported ISCs of these two procedures usually differ substantially with higher ISCs in the
latter due to reduced noise in the averaged ROI time series (as demonstrated using a different
averaging procedure by Schmälzle, Imhof, Grall, Flaisch, & Schupp, 2017).

Functional brain connectivity: psychological-physiological interaction analysis

The most widely used method of computing functional connectivity in communication neuroscience
is PPI, which relies on the standard convolution based GLM logic (Huskey, 2016). Like a standard
GLM analysis, the first step of a PPI analysis is to construct a model of the brain activity expected to
be evoked by the task (e.g., a boxcar model). Simplifying somewhat, when the model is constructed
as a contrast, the method is called standard PPI (sPPI); if instead each task component is modeled
separately, the method is called generalized PPI (gPPI). Next, preprocessed BOLD activity (from a
single voxel, or averaged over voxels) is selected from a given seed ROI. The ideal next step is to
deconvolve the extracted BOLD timeseries, take a product of this deconvolved timeseries with each of
the (unconvolved) task regressors, and then convolve everything to derive the final set of regressors.
After these steps, the full model comprises one regressor for the seed BOLD timeseries (the
physiological regressor), M regressors encoding the task design (where M is the number of classes
of events; these are the psychological regressors), and M interaction terms between the physiological
regressor and each psychological regressor. The resulting parameter estimate for each interaction
term represents how connectivity changes as a function of the event or process associated with the
corresponding regressor.

As this is a special case of the GLM, all of the assumptions and pitfalls that accompany the GLM
apply here. However, PPI analyses bring with them a number of additional assumptions. First,
ideally, PPI involves deconvolving BOLD activity; however, the mathematical operation of convolu-
tion is not invertible given finite amounts of data, so in practice, deconvolution involves making
various assumptions which may vary in their accuracy (Bush & Cisler, 2013; O’Reilly, Woolrich,
Behrens, Smith, & Johansen-Berg, 2012). Current evidence suggests that deconvolution is particu-
larly important for event related designs, but less-so for block designs (Gitelman, Penny, Ashburner,
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& Friston, 2003); further work is required to determine the degree to which the alternative—taking
the product of BOLD activity with convolved task regressors—is suboptimal.

McLaren and colleagues (2012) also show that gPPI approaches yield better model fits compared
to sPPI. This has several important implications. Specifically, considering results from a sPPI analysis
necessarily introduces two types of error that are more carefully accounted for in gPPI. The first is
essentially a Type II error where significant connectivity patterns may not be observed under a sPPI
(because formulating the regressor as a contrast imposes a strict hypothesis regarding the difference
between conditions). The second, and more worrisome, is a Type I error where connectivity patterns
observed under sPPI are potentially false positive results that disappear when a better statistical
model (gPPI) is constructed.

A final word of caution. PPI analyses suffer from reduced statistical power (Friston et al., 1997).
This is essentially due to multicollinearity issues. The simplest PPI model will have three regressors:
(1) task or psychological, (2) physiological, and (3) the interaction term. This interaction terms is
necessarily correlated with the other two regressors in the model, which ultimately reduces the ability
to detect a significant effect. As with any normal GLM, this can be mitigated (with varying degrees of
success) by centering the regressors in the model.

Synthetic analysis methods: brain-as-predictor

Our last method is the brain-as-predictor approach. Conceptually, the idea is straightforward. A
(relatively) small group of participants is scanned while they are presented with various stimuli (e.g.,
persuasive anti-smoking ads compared to some non-persuasive baseline). Brain activity or signal
changes (treatment vs. control) within certain key brain regions are estimated for each stimulus.
Then, these brain activity estimates are used to predict outcomes in large independent samples or
even populations. It is not necessarily surprising that brain activity can be used in this manner—but
it is quite surprising that it has been demonstrated that brain activity can improve prediction above
and beyond self-report measures or theoretical predictions made on the basis of stimulus features
(e.g., Falk, Berkman, & Lieberman, 2012). This suggests that there is latent information in the brain
to which participants do not have conscious access, are not willing to express (e.g., social desirability,
counterarguing), or at the very least, which we do not currently have a means of eliciting using more
traditional (e.g., paper-and-pencil or physiological) approaches.

One of the first things to consider with brain-as-predictor is that there may be an inherent
circularity in using brain data to predict psychological processes and their self-reported or behavioral
outcomes if those outcomes have been used to define the contrasts for modeling the brain response
in the same sample. Accordingly, real and valid brain-as-predictor analyses must be out-of-sample,
that is, brain data in the fMRI sample is used to predict a psychological process and its self-reported
or behavioral outcomes in another, independent sample (or use an independent functional localizer
task; see description below). In addition, if predicting behavioral outcomes is the primary goal of a
brain-as-predictor study (as opposed to identifying potential cognitive mechanisms from a basic
science perspective), some additional justification is required before using difficult-to-collect brain
data to predict outcomes in independent samples that easier-to-collect self-report data can predict
just as accurately, if not better. Thus, any study using a brain-as-predictor approach for the purpose
of prediction must confirm that using brain data improves prediction accuracy above and beyond
self-report or observational data; otherwise, the emphasis on improving our basic scientific under-
standing of the brain’s role in communication phenomena per se should be made explicit.

Once these requirements are met, brain-as-predictor analyses face two crucial challenges: (1)
which brain data should be used, and (2) how to model brain data together with self-report and
behavioral data across two or more independent samples? Typically, researchers use existing
literature to identify structures that are commonly implicated in a given communication-relevant
process. Using the most straightforward data-driven alternative—selecting an ROI due to its ability
to make out of sample predictions in one study—threatens the generalizability of that ROI for future
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studies. This is because ROIs derived from data-driven procedures may capitalize on chance, and
therefore may have limited predictive ability in replication studies. Of course, as we have already
described, some of the most well-studied ROIs in the area of predicting persuasion outcomes have
been validated and replicated across multiple domains and with multiple neural measures and
prediction methodologies (e.g., the mPFC). Nonetheless, the safest approach is to use ROIs defined
completely independently (e.g., from a functional localizer designed to target a process of interest,
e.g., as in Falk et al., 2016; from a data-driven parcellation, e.g., Schaefer et al., 2017; from a meta-
analytic tool such as neurosynth, Yarkoni et al., 2011; or based on anatomical features, e.g., Glasser
et al., 2016).

Moreover, in addition to choosing the ROI, the choice of brain data entails choosing a valid
control condition. Using our running study example, if PSAs varying in persuasiveness are used to
predict behavior change, then the best control condition for the neural predictors is a PSA from
which (only) the persuasive content in question has been removed. This is not a trivial procedure.
For instance, researchers could use modified PSAs in which the relevant message has been removed
or altered, or use the same PSAs presented in a scrambled version (i.e., removing any meaning but
keeping sound and brightness amplitudes constant). The use of a task-free “baseline” (i.e., a
condition in which participants focus on a black screen with a centered cross) is common, but
may fail to properly control for various confounds, and also raises the possibility of baseline
differences (e.g., between individuals) adding noise and degrading prediction quality. Of course,
one could argue that if a brain-as-predictor analysis has produced out-of-sample predictions of
message effectiveness and behavior change with increased accuracy over self-reports, then the
baseline or confound issue was obviously not a major problem. We agree with this counter argument
if the practical application of brain-as-predictor analyses is at the center of a study. However, for the
further development of persuasion theory, that is, for enhancing our understanding of why exactly
certain messages work and others do not, a carefully designed control condition that can isolate
explanations to particular message features is important. To be clear, such a lack of a proper control
or baseline condition is not unique to or inherent in brain-as-predictor analyses, but the role of a
proper baseline has perhaps previously been articulated less clearly than for other analysis methods.

Next, researchers using the brain-as-predictor approach need to use brain and self-report data in
the fMRI sample to predict self-report or behavioral data in another sample. The current practice to
combine data from heterogeneous datasets is to rank order all available data and to use an ordinal
regression model for prediction. Despite this general practice in virtually all published brain-as-
predictor studies, it is not obvious that this procedure is appropriate under all circumstances.
Dependent on the data’s original distributions, rank transformations can artificially inflate or deflate
prediction accuracies (because rank transformations are inherently nonlinear, which arbitrarily
changes the data’s covariance structure; Akritas, 1991; Saltelli & Sobol, 1995; Seaman, Algina, &
Olejnik, 1985). Thus, albeit rarely done, it is good practice to report the data’s distribution
characteristics (especially variance and skew) and to compare the ranked and unranked prediction
models before making statements about the true predictive power of brain-as-predictor analyses.

Finally, brain-as-predictor still requires classic forward inference and careful experimental manip-
ulation in order to determine what exact role any given brain area plays in a particular phenomenon.
That is, the observation that activity in a brain area predicts outcomes in an independent sample
above chance levels certainly demonstrates the sufficiency of that activity in making such predic-
tions, but does not shed light on the necessity of that brain area (i.e., it could simply be upstream or
downstream of some region that is actually causally involved); likewise, beyond vague process-level
descriptions like “persuasive message processing,” determining the mechanism requires going
beyond simple message-level prediction (e.g., as exemplified by the sort of more model-driven
analyses featured in more recent work such as Pegors et al., 2017). This limitation is in some ways
related to the reverse inference fallacy (the mistaken belief that observing activity in brain area X
during putative cognitive process Y means that X does Y) that is common across all of the methods
described here (as well as most other fMRI analysis methods; Poldrack, 2006). However, it is
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exacerbated when the process in question is not in fact a process, but a phenomenon that results
from potentially dozens of interacting processes. Notwithstanding, converging evidence can certainly
shed light on the role of well-studied areas, as the examples related to the mPFC and persuasion that
we cite above show.

Conclusion

The use of fMRI is fairly new in communication, but as it becomes more common, the range of
analytic methods employed grows as well. For researchers who may want to begin carrying out this
type of research themselves, it can be overwhelming to keep track of the goals and limitations of all
of these methods. Our aim here is to give these researchers a jumpstart and some understanding of
these goals and limitations, and also to provide canonical references for those interested in learning
more. Likewise, even for researchers who work with some of these methods routinely, it can be
helpful to be reminded of some of the ways in which analytical methods for fMRI data can fail,
particularly when such failures are hard to detect. Therefore, although we avoided highly technical
detail, we tried to highlight challenges beyond simple “rookie mistakes.”

By making these analytical methods somewhat more accessible, and offering examples of how
each method has been used in communication research previously (or how it might be used in the
future in the case of methods that have not yet been adopted), we can increase the pace at which
these methods are employed in furthering our understanding of communication phenomena.
Moreover, by pointing out unanswered challenges in the technical application of some of the
more widespread analysis techniques within the field, we specify the work that still needs to be
done, and highlight the caution required in interpreting otherwise dazzling results. While it cannot
(and should not be expected to) supplant other more traditional approaches to communication
research, we believe strongly in the promise of fMRI to advance the field, and to help catalyze a new
era of research.
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