Are media induced flow experiences energetically optimized? A test of the synchronization theory of flow's optimality hypothesis

Richard Huskey, Shelby Wilcox, & René Weber

Center for Cognitive and Brain Sciences School of Communication The Ohio State University https://cogcommscience.com/

What is Flow?

Csikszentmihalyi's Theory of Flow¹

- When (a) task goals are clear, (b) feedback is immediate, and (c) there is a balance between the task difficulty and an individual's ability at the task:
 - High attentional demand
 - Diminished self-consciousness
 - Loss of temporal awareness
 - Perception that task is not physically/mentally taxing
 - High levels of intrinsic reward such that the task is perceived as intrinsically motivating
- ► Together, these outcomes describe *flow* experiences

¹Csikszentmihalyi. (1975)

Things We Know

Empirical evidence shows that flow:

- ► Is an outcome of media use²
- ► Modulates subsequent media effects³
- ▶ Is positively related with intentions for media use⁴

We also know that:

- ► Some individuals are more likely to experience flow than others⁵
- ► Flow proneness has distinct neurobiological mechanisms⁶
- ► Flow proneness is heritable⁷

²Keller & Bless. Personal. Soc. Psychol. Bull. (2008)

³Matthews. Comput. Human Behav. (2015)

⁴Liu, Liao, & Pratt. Comput. Educ. (2009)

⁵Ullén, et al. Pers. Individ. Dif. (2012)

⁶de Manzano, et al. *Neuroimage* (2013)

⁷Mosing, et al. Pers. Individ. Dif. (2012)

A Neural Conceptualization of Flow

"Flow is a discrete, energetically optimized, and gratifying experience resulting from the synchronization of [cognitive control] and reward networks under condition of balance between challenge and skill" 8

- ► H1: Flow experiences result in a network synchronization process between cognitive control and reward networks
- ▶ H2: This network synchronization is a discrete state that is separable from other neuropsychological states
- ▶ H3: This network synchronization process corresponds to an energetically efficient brain state
- ► H4: This network synchronization manifests as an enjoyable experience

⁸Weber, et al. Commun. Theory (2009)

A Neural Conceptualization of Flow

"Flow is a discrete, energetically optimized, and gratifying experience resulting from the synchronization of [cognitive control] and reward networks under condition of balance between challenge and skill" 9

- ► H1: Flow experiences result in a network synchronization process between cognitive control and reward networks
- ▶ H2: This network synchronization is a discrete state that is separable from other neuropsychological states
- ► H3: This network synchronization process corresponds to an energetically efficient brain state
- ► H4: This network synchronization manifests as an enjoyable experience

Weber, et al. Commun. Theory (2009)

Characteristics of Networked Brains

Nature Reviews | Neuroscience

Brain networks have different energetic costs¹⁰

- ▶ Low cost/efficiency (left): Nodes connected to nearest neighbor
- ► High cost/efficiency (right): Random network
- ► Medium cost/efficiency (middle): Many human brain networks

¹⁰Bullmore & Sporns Nat. Rev. Neurosci. (2012)

Stimulus

Three Conditions:

- ► Low-Difficulty (Boredom)
- ► Balanced-Difficulty (Flow)
- High-Difficulty (Overload)

Asteroid Impact:

- An open-source video game
- High experimental control
- Custom content analysis
- Naturalistic task
- Download and contribute https://github.com/ richardhuskey/asteroid_ impact

Data Extraction & Analysis

Global Efficiency Results

Balanced-difficulty > low-difficulty (t=-19.12, p<0.001) Balanced-difficulty > high-difficulty (t=-10.03, p<0.001)

What Have We Learned?

This study:

- Provides evidence that network synchronization during flow experiences are energetically efficient
- Suggests potential neuromarkers of flow

Next step:

 Evaluating if these neuromarkers are dynamic or static (data collection ongoing)

Shelby Wilcox

Rene Weber

Michael Miller

Britney Craighead

Natalie Petit

Robyn Adams

Justin Keene

Our lab: http://cogcommscience.com/

Our data & code (OSF): https://goo.gl/DGufcE Our stimulus (GitHub): https://goo.gl/Ge7NLF

