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Brain Imaging in Communication Research: A Practical
Guide to Understanding and Evaluating fMRI Studies

René Weber, J. Michael Mangus, and Richard Huskey
University of California Santa Barbara

Core communication research questions are increasingly being investigated using brain imaging
techniques. A majority of these studies apply a functional magnetic resonance imaging (fMRI)
approach. This trend raises two important questions that we address in this article. First, under what
conditions can fMRI methodology increase knowledge and refine communication theory? Second,
how can editors, reviewers, and readers of communication journals discriminate sound and relevant
fMRI research from unsound or irrelevant fMRI research? To address these questions, we first discuss
what can and cannot be accomplished with fMRI. Subsequently, we provide a pragmatic introduction
to fMRI data collection and analysis for social-science-oriented communication scholars. We include
practical guidelines and a checklist for reporting and evaluating fMRI studies.

Brain imaging methods are on the rise in communication. Inspired by a paradigmatic shift toward
process driven, materialist communication science (Lang, 2013; Lang & Ewoldsen, 2013; Weber,
Sherry, & Mathiak, 2008; Weber, 2015), and enabled by innovations in brain imaging technology
(Mather, Cacioppo, & Kanwisher, 2013), we are beginning to see an increasing number of studies
that examine core communication research questions using functional neuroimaging. Examples,
which are by no means exhaustive, include studies on television violence (Murray et al., 2006),
on playing video games (Bavelier et al., 2011; Mathiak & Weber, 2006; Weber, Ritterfeld, &
Mathiak, 2006), on deception detection (Langleben et al., 2002), on affective responses while
watching movies (“neurocinematics”; Anderson, Fite, Petrovitch, & Hirsch, 2006; Hasson, et al.,
2009; Hasson, Nir, Levy, Fuhrmann, & Malach, 2004), on persuasion (Falk, Berkman, Mann,
Harrison, & Lieberman, 2010; Berkman & Falk, 2013; Weber, Huskey, Mangus, Westcott-Baker,
& Turner, 2015), on health messages (Falk, Berkman, Whalen, & Lieberman, 2011), and on
strategies in marketing communication (Ariely & Berns, 2010).

Most of these studies, as well as many other communication brain imaging studies, use a
functional Magnetic Resonance Imaging (fMRI) approach. The recent trend of fMRI studies
in core areas of communication research raises two main concerns. First, will this trend lead
to an increase in useful knowledge in our field or will “neurobabble” take over and perhaps
even displace sound traditional communication research? Considering the past 20 years of fMRI
research may help here. The first fMRI study was published in 1992 (Kwong et al., 1992; Mather,
Cacioppo, & Kanwisher, 2013). Since then, research using fMRI has exploded—in 2010 the
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6 R. WEBER ET AL.

journal Nature counted 1,500 fMRI publications per year with an increasing trend across all
empirical sciences (Smith, 2012). During its infancy, some cognitive scientists criticized fMRI
research as a “new phrenology” (e.g., Uttal, 2001) and as a “fancy methodology” that failed to
resolve conceptual or theoretical controversies (e.g., Page, 2006). Within the broader field of
communication, many continue to raise similar concerns. However, others have demonstrated
that fMRI studies provide crucial additional dependent variables that help to constrain theory
testing (White & Poldrack, 2013). Greenwald (2012) analyzed 13 major theoretical controversies
in cognitive and social psychology since the 1950s and concluded that only one can be counted
as resolved, and that this resolution was a consequence of neuroimaging data and not based on
behavioral or self-report data.

Today there is little doubt that fMRI has come a long way since the early studies of the 1990s
(see Smith, 2012), and when the study is properly designed and conducted, fMRI data can pro-
vide a valuable contribution to communication theory (for more discussion on this issue, see
Weber, Falk, & Eden, in press). However, the question of what exactly is a properly designed
and conducted fMRI study is difficult to answer for many communication scholars, which leads
to our second concern: How can our field discriminate good, relevant fMRI research from bad,
irrelevant fMRI research? Is there a critical mass of qualified editors, reviewers, and scholars in
our discipline to assure high-quality fMRI research in our communication journals? The answer
is probably “not yet.” As a consequence, communication scholars often perceive fMRI studies as
too difficult, esoteric, and risky.

At the same time, editors of major communication journals are receiving an increasing num-
ber of submissions with fMRI study designs but find themselves confronted with the problem of
conducting a first, informed review of submissions in order to decide whether or not to send sub-
missions to reviewers (J. B. Walther, personal communication, May 26, 2012). After that, editors
find it difficult to locate a diverse set of qualified reviewers in our field who are familiar with
both the communication literature and fMRI methodology. As a consequence, editors of commu-
nication journals have repeatedly requested fMRI workshops at conferences of the International
Communication Association or the preparation of guidelines by communication scholars familiar
with fMRI research. This article is our response to these requests.

We realize that fMRI research can be difficult, and conducting these studies requires sub-
stantial training and experience. However, we also believe that communication researchers who
are trained in social scientific methodology already have many of the skills needed to thought-
fully evaluate and critique fMRI studies, which build on core scientific principles familiar to
many scholars. We hope that our article serves communication scholars as a first place to
look for advanced (and not trivial) guidelines that can be readily understood with some effort.
Accordingly, this article offers practical recommendations for fMRI research with the specific
methodological background and research questions of communication scholars in mind.

In this spirit, we have tried to select resources and tools for acquiring fMRI skills which are,
for the most part, freely available and are appropriate for scholars trained in communication
programs with a social-scientific orientation. At the same time, this article cannot (and should
not) replace a comprehensive textbook on fMRI methods. For readers interested in learning more,
we recommend Huettel, Song, and McCarthy (2014), a well-written and easy-to-process fMRI
textbook. Additionally, Poldrack, Mumford, and Nichols (2011) provide a practical introduction
to fMRI data analysis, while Ashby (2011) offers a comprehensive overview of the statistical
methods that underlie most fMRI studies.
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BRAIN IMAGING IN COMMUNICATION RESEARCH 7

With these considerations in mind, the first section of our paper discusses the most common
conceptual fallacies and misguided expectations of fMRI. This section is a useful reading even
for scholars with only a general interest in fMRI methodology. Then, we provide a “jump start”
in fMRI for communication scholars, including concrete guidelines for reporting and evaluating
an fMRI study, and conclude with an outlook for the future of fMRI in communication research.
We hope to provide communication scholars some knowledge of what fMRI research entails
and where to find high-quality resources for the self-education on fMRI. A summary of practical
guidelines for reviewing fMRI research is also provided as a condensed checklist in the Appendix.

WHAT CAN AND CANNOT BE ACCOMPLISHED WITH FMRI?

While we are thoroughly optimistic about the ability of fMRI to provide new insights into com-
munication, it is no panacea. Readers—and, crucially, editors and reviewers—should maintain
realistic expectations and a healthy skepticism regarding fMRI studies. Of course, any such study
inevitably rests on underlying philosophical premises about the nature of the mind, for instance,
the belief that mental states supervene on brain states (for a strong version of the reductive phys-
icalist view, see, e.g., Dennett, 1991; for softer alternatives to reductive physicalism, see, e.g.,
Davidson, 1992; Searle, 2004). While debates over the mind-body problem are both interesting
and valuable, we have no reason to expect them to be resolved by any contribution we could
make here. Instead, this paper focuses on the practical and methodological considerations that
are crucial for conducting a sound fMRI study. Research using fMRI can fall victim to fallacious
expectations, poorly-executed methods, aberrant analysis, and overstated conclusions. In this sec-
tion, we first explain the conceptual capabilities and limitations of fMRI; the sections that follow
will provide practical guidelines for experimental design, data collection, and analysis.

Fallacious Expectations—Questions to Address with fMRI

For the most part, fMRI studies address basic and very specific questions. A common misconcep-
tion is that “looking into people’s brain” will quickly provide conclusive answers for conceptual
or theoretical controversies. For instance, consider the cognitive construct of presence (Lee,
2004) resulting from media exposure. If presence is taken to be a multi-dimensional and, in
terms of mental processes, vaguely conceptualized construct, simply sliding someone in a brain
imaging scanner and then expecting to see “presence” and the involved mental processes is ill-
advised and unlikely to increase knowledge. Put differently, testing a theoretical prediction using
fMRI requires that the concept in question has been clearly defined in such a way that observing
differing patterns of brain activity would meaningfully test the prediction.

Affective, cognitive, and behavioral processes categorically involve the human brain. Thus,
simply observing that the brain responds to communication task X is of no interest and a waste of
resources because it tells us little about what psychological process might be occurring (Cacioppo
et al., 2003). Similarly, that brain images look sophisticated or interesting is not a valid indi-
cator of the significance of fMRI for communication theory. In fact, it has been demonstrated
that using brain images in reporting research findings can be seductive and even deceiving
(McCabe & Castel, 2008; Weisberg, Keil, Goodstein, Rawson, & Gray, 2008; but Farah & Hook,
2013). Falk (2012) outlines a number of specific communication research questions that can be
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8 R. WEBER ET AL.

addressed (or enhanced) with neuroimaging methods. We recommend this reading as a source
of ideas for concrete and reasonable fMRI communication studies including high-quality stud-
ies on presence (see also Falk, Cascio, & Coronel, 2015). On a more conceptual level, there are
essentially three basic research questions for which fMRI can provide useful answers with the
potential to advance communication theory (Aue, Lavelle, & Cacioppo, 2009; Mather, Cacioppo,
& Kanwisher, 2013):

First, can a specific mental process involved in a communication phenomenon be localized to
a specific brain network? While we agree with Coltheart (2013) in saying that simply localizing
neural activity is in itself of little theoretical value, such brain-mapping studies are the neces-
sary precursor for testing theory. In other fields, many foundational brain-mapping studies have
already been conducted, but the cognitive processes of interest in those studies may not always
be directly applicable to communication. Therefore, we believe that localization studies, which
dominated neuroimaging research in its initial phase, still have their place today to provide a
better groundwork for explanation and prediction of communication phenomena. For instance,
if communication researchers are able to demonstrate that attitude change selectively engages
specific brain systems, then we know that the mind contains a specialized and dissociable mech-
anism for attitude change and that brain activity in this system can be used to predict attitude
change (e.g., Falk et al., 2010, 2011). This logic should not be confused with simply stating
where activity in the brain has occurred as response to a study task and concluding that this activ-
ity is indicative for a mental process (see the section on reverse inference below). It should also be
noted that state-of-the-art localization studies rarely identify brain activity in one isolated cortical
structure—this is not how the brain is wired for processing information. The brain is a complex
network of interconnected neurons, and as such conducting a localization study usually means
that communication scholars have to identify dissociable connectivity patterns among distributed
cortical networks (e.g., Ramsay, Yzer, Luciana, Vohs, & MacDonald, 2013).

Second, can a localized mental process X be found during communication task Y? For
instance, to the extent it has been demonstrated that cognitive aggression selectively engages
specialized brain systems, there is value in studying if markers of cognitive aggression can be
found when participants play a violent video game or if other well-established mental processes
are more involved in this task (Weber, Ritterfeld, & Mathiak, 2006).

Third, do different communication tasks engage distinct or common processing mechanisms?
For this question, the requirement of selectivity and functional specialization is not as impor-
tant as for the first two questions, because conclusions are inferred by comparing two or more
brain states and not by interpreting one particular brain activity pattern. For instance, scholars
interested in computer mediated communication can investigate whether processing faces of real
persons engages the same mechanisms as processing faces of avatars and to what extent realness
or mediation is an important factor in this task (e.g., Churches, Nicholls, Thiessen, Kohler, &
Kaege, 2014; James et al., in press).

The justification for addressing any of the aforementioned research questions with fMRI is
even stronger if an argument can be made that the mental processes under investigation are
difficult to access via conscious reasoning, and that bypassing the conscious system when col-
lecting data improves the accuracy of behavioral predictions (e.g., due to the lack of memory
bias, socially desirable response patterns, testing effects). For instance, Falk et al. (2010, 2011;
see also Weber et al., 2015) were able to show that adding fMRI signals in theoretically relevant
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BRAIN IMAGING IN COMMUNICATION RESEARCH 9

brain regions to traditional self-report measures significantly improved the prediction accuracy of
attitude and behavior change in independent samples after exposure to health messages.

Finally, fallacious expectations can arise at a practical level. Anderson et al. (2006) summarize
potential pitfalls when communication scholars are interested in using functional neuroimaging
and seek opportunities for collaboration with cognitive psychologists and neuroscientists. From
our own experience, it is important that communication scholars engage in collaborations with
some knowledge about fMRI research, as provided by this article, and with realistic expectations.
Unfortunately, finding scholars with advanced fMRI skills in other disciplines who welcome the
specific training and ideas of communication scholars, or finding fMRI facilities with a research
focus and with personnel who have confidence in the skillset of communication scholars, is
difficult and rather the exception than the rule. Nonetheless, we do not feel that this exchange
is wholly one-sided either. For instance, many fMRI studies utilize high-control stimuli (e.g.,
checkerboards, Stroop tasks) that are optimized to investigate tightly constrained research ques-
tions. By comparison, communication researchers have considerable expertise dealing with the
complexities inherent to low-control and naturalistic stimuli (for instance, see Mathiak & Weber,
2006). These skills may be of great value to potential collaborators.

Overstated Conclusions—Subtraction, Reverse Inference, and Consistency Fallacy

Oftentimes, fMRI research reports state that communication task X (e.g. watching a persuasive
message) activates brain region Y which has previously been associated with mental process Z.
The important question here is: compared to what? Standard fMRI analysis follows a subtraction
logic, that is, brain activation patterns are a result of comparing one or many experimental con-
ditions with a control (also called rest or baseline) condition. But what is a meaningful baseline?
Frequently, fMRI designs use an inactive baseline condition which typically comes in the form of
a black screen (sometimes with a centered cross or other shape in order to focus eye gaze and to
reduce head motion). The implied assumption is that during this inactive baseline brains return to
a resting and inactive state. Whether this inactive state is indeed inactive and can be considered
as a useful baseline has been frequently challenged (e.g., Morcom & Fletcher, 2006). An alter-
native, and presumably superior control condition is an active baseline. For instance, short video
sequences with persuasive content could be compared to similar video sequences (e.g. in terms of
average sound and brightness amplitudes) but this time with persuasive or sense-making content
removed by scrambling the audio and video tracks. Conclusions that follow from analyses with
subtraction logic crucially depend on the type and content of baseline conditions which must be
clearly defined and included in the interpretation of fMRI results.

Furthermore, the basic subtraction paradigm must be understood as a tool for brain-mapping,
not mind-reading. A typical, simple statistical analysis of fMRI data will yield contrasts that
indicate which brain regions are significantly more activated by condition A than by condition B
or vice-versa. Suppose that the study is exploratory and has no specific brain region of interest
(ROI) about which to hypothesize. Instead, the researchers image the entire brain and observe a
significant cluster of activation in brain region X. Perhaps that activation seems to make sense;
prior studies have associated region X with cognitive process P, which might plausibly be engaged
during condition A but not B. Frequently, the researcher will be tempted to assert that, based on
their brain-imaging data, cognitive process P took place under condition A, but not condition
B. However, fMRI brain-mapping data can provide only very limited support for such a claim.
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10 R. WEBER ET AL.

The relationship between cognitive processes and brain activity is not bijective; that is, cognitive
processes do not map one-to-one onto certain brain regions. Brain region X may be activated by
cognitive process P, but also process Q, R, S . . . Similarly, cognitive process P might activate
region X, but also regions W, Y, Z . . . The fact that the region was active does not guarantee that
the purported cognitive process took place.1

This limitation is known as the problem of reverse inference, and it can be ameliorated in two
general ways (Poldrack, 2006). The first way is within the control of the experimenter: combine
brain-imaging data with more traditional measurements. Brain-imaging data can be gathered in
conjunction with other measures, whether observational or self-report, which can provide further
evidence to help triangulate the active psychological processes. Researchers in communication
and media science should be highly familiar with the development of such measures, and brain-
mapping should be seen as a complement to those tools, not a competitor. The second way to
avoid the reverse-inference problem is beyond the control of any particular experiment: estab-
lishing that a certain region exhibits high selectivity can strengthen the justification for a reverse
inference conclusion. Researchers have to demonstrate that certain brain regions exhibit highly-
selective responses that are consistently associated with one cognitive process but not others (see
above, conceptual research question one). Data-sharing and replication are crucial to establish the
selectivity of a region by observing trends across numerous studies (e.g., http://neurosynth.org).

Finally, it is quite common in fMRI articles to conclude that the consistency between the-
oretical propositions and fMRI data demonstrate the validity of the theory. In many cases this
conclusion is overstated and known as consistency fallacy (Mole & Klein, 2010). The observation
that fMRI data is consistent with a theory cannot solely be used as evidence for the theory. In order
to avoid a consistency fallacy, fMRI researchers have to demonstrate that their study could have
produced some specified alternative brain activation patterns that are inconsistent with the the-
oretical predictions and, despite all methodologically sound effort, these brain activity patterns
were not among the observed results (Coltheart, 2013).

PRACTICAL GUIDELINES FOR CONDUCTING AND CRITIQUING FMRI STUDIES

The brain is an interconnected network of neurons that manipulate electrochemical gradients.
This collective system of coordinated signal processing is the measurable physical substrate of
mental activity. In medicine, brain imaging might be used to diagnose some anatomical abnor-
mality and a single highly detailed still image will suffice for this purpose. However, in functional
brain imaging, researchers are interested in how a certain psychological state or behavior is related
to brain activity. Because the brain is a dynamical system with distributed interactions across
multiple anatomical regions, activity must be measured in both spatial and temporal dimensions.

In order to grasp the capabilities of fMRI as a measurement tool, it is first necessary to under-
stand what fMRI actually measures. When a group of neurons fire, blood flow to that region
of the brain increases in order to deliver oxygen and energy in the form of glucose. Increases
in neuronal activity correspond with a rapid (0.5–2.5 seconds) increase in oxygen consumption.
A corresponding increase in cerebral blood flow supplies additional oxygen, although at a slower

1We do believe that some informed speculation using the logic of reverse-inference may be useful in the discussion
section of a paper, provided that the authors make it clear that any such conclusions are, in fact, merely speculative.
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BRAIN IMAGING IN COMMUNICATION RESEARCH 11

rate (peak occurs about 5-6 seconds after onset of increased demand). This increased blood flow
is known as the hemodynamic response (HR). Fluctuations in blood oxygenation level alter the
local magnetic properties of the active brain region. This is referred to as the blood-oxygenation-
level dependent (BOLD) response (Ogawa, Lee, Kay, & Tank, 1990; for an excellent review, see
Raichle & Mintun, 2006). Importantly, the amount of oxygen supplied exceeds the amount of
oxygen consumed by the increased brain activity. Given that there is more oxygen supplied than
consumed, increases in neural activity correspond with an increase in oxygenated hemoglobin.
This difference in oxygenated (oxyHb) and deoxygenated (deoxyHb) hemoglobin is known as
the BOLD contrast. In fMRI, strong static magnetic fields (typically between 1.5 and 3 tesla)
are used in conjunction with varying magnetic fields (field gradients) and radio-frequency (RF)
pulses to localize changes in BOLD contrast. The spatial resolution of fMRI data is typically
1–5 cubic millimeters, and the temporal resolution is about 2–3 seconds. All this requires a large,
noisy, and expensive scanner in which participants lie on their backs inside a narrow bore.

It is important to point out that the BOLD signal is only an indirect measure of neural activity
characterized by low signal and considerable noise. However, BOLD signals have been shown to
closely correlate with local neuronal activity (Logothetis, Pauls, Augath, Trinath, & Oeltermann,
2001; Logothetis & Pfeuffer, 2004). Thus, communication studies using fMRI are based on the
following logic: (1) communicative stimuli or events lead to (2) localized increases in neural
activity in participants’ brains which, in turn, (3) result in changes in metabolism (primarily oxy-
gen and glucose) which (4) prompts an increase in blood flow that (5) changes the ratio between
oxygenated and deoxygenated hemoglobin (BOLD), which (6) can be detected by magnetic reso-
nance imaging techniques (DeYoe, Bandettini, Neitz, Miller, & Winans, 1994) within a magnetic
resonance imaging (MRI) scanner.

With these important first considerations in mind, we now turn our attention to the practical
aspects of conducting a study utilizing fMRI technology. In the following sections, we provide a
general overview of the essential components of fMRI studies including model design, data col-
lection, preprocessing, common analytic procedures, and specific methods that are particularly
useful for testing communication theories. At each step along the way, three basic questions will
be examined. First, what is the purpose of this step? Second, how should this step work? Third,
how should this step be reported and what should reviewers look for to be sure it has been carried
out in a reasonable, valid way? This three-step progression should help organize the most relevant
information for different types of readers—first an overview for a general audience; second, tech-
nical details for those interested in conducting fMRI research; and finally, guidelines for readers
and reviewers to assess a study’s quality. This structure necessitates some overlap between each
section, however we have endeavored to keep this as minimal as possible. A condensed checklist
of key issues is available in the Appendix.

Experimental Design and Data Collection

What Is the Purpose?

To detect brain activity associated with a task or stimulus of interest, a sound experimental
design must be used. The requirements for using appropriate stimuli and designs are higher in
fMRI compared to more traditional experiments because of the aforementioned low signal, high
noise characteristics of the data. Typical experimental paradigms for neuroimaging research can
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12 R. WEBER ET AL.

be broadly classified into two types: block designs and event-related designs. In a block design,
participants cycle through experimental conditions in separate periods of time. For instance, sev-
eral trials of stimuli thought to activate some cognitive process of interest are presented in one
block, followed by a neutral baseline period, followed by another set of treatment stimuli, and
so on. Alternatively, using event-related design, different conditions can be presented in arbitrary
order with a variable interstimulus interval (ISI; Dale, 1999).

Neither approach is inherently superior. A block design facilitates more convenient study
design optimization, data collection, and analysis because the design is simpler. Theoretically,
a block design also provides greater statistical power (more similar stimuli lead to higher signal
within in a block) than an event-related one, although, depending on the nature of the study, this
is not necessarily relevant in practice (Chee, Venkatraman, Westphal, & Siong, 2003). On the
other hand, event-related designs allow for experiments where the sequence of events is driven
by the participant rather than predefined by the researcher (e.g., labeling persuasive sequences
in a message). Event-related designs should also be considered if randomizing the sequence of
conditions is important, for instance, if the predictability of stimuli within a block might interfere
with the process of interest through boredom, habituation, strategizing, or the like (Chee et al.,
2003).

In either case, brain mapping is most effective when using high-control stimuli that are care-
fully calibrated to exclusively engage a certain process. This poses a major problem for most
mainstream communication research both theoretically and methodologically. Theoretically,
communication models tend to focus on high-level psychological processes of self-referencing,
perspective-taking, social learning, cognitive dissonance, or any number of other multifaceted
constructs. Isolating this sort of construct into specific cognitive processes is inherently challeng-
ing (see our first section in this article). Methodologically, communication research frequently
uses stimuli that offer comparatively low control. For instance, suppose a researcher wants to
compare the persuasiveness of two different public service announcements. The messages might
vary in dimensions that are relevant for persuasion, the use of scientific evidence versus indi-
vidual testimonials, for instance, but are likely to also vary in many other ways that could yield
extraneous brain activity and should be controlled for, like the amount of motion or luminosity.
Effective fMRI for higher-order processes requires carefully controlling for unrelated lower-order
processes induced by the experiment itself.

How Does It Work?

Once the experimental procedure has been thoroughly prepared, data collection can begin.
An experimental session usually begins with a series of so-called structural scans to calibrate
the scanner and generate a static but high-resolution anatomical image of the participant’s
brain. Then, during so-called functional scans, three-dimensional scans are taken at regular
intervals with a period defined by the repetition time (TR) and converted into an image. Each
three-dimensional image is referred to as a volume. A volume is composed of thousands of vox-
els (volume-elements, the 3D equivalent of a pixel), its atomic components, which represent
activation at a point in space.

When conducting studies with a scanner that is primarily utilized for functional imaging, the
scanner technician will be able to recommend settings that meet the needs of your study. For
instance, a typical TR for functional neuroimaging is 1–3 seconds, although TRs of less than

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 2

0 
M

ar
ch

 2
01

5 



BRAIN IMAGING IN COMMUNICATION RESEARCH 13

1 second are possible today. If a study design necessitates alternate settings, a good scanner
technician should be able to inform researchers about the best approach to achieve particular
research objectives.

What Should Be Reported and What Can Go Wrong?

Poldrack et al. (2008) offer a detailed explanation of some common issues associated with
reporting fMRI data. However, this and other resources (e.g., the fMRI methods wiki, http://www.
fmrimethods.org/) are targeted toward readers who are already quite familiar with conducting
research using brain imaging techniques. Given that the use of fMRI in communication research
is a more recent development, it may be useful to expand on several issues that are treated as tacit
knowledge in other resources.

Participants. Communication scholars are already quite familiar with reporting information
about subjects and sample size. In addition to demographic information, brain imaging stud-
ies must also disclose information about a sample that may not be immediately obvious. For
instance, the inclusion of both right- and left-handed subjects in a study raises potential issues as
hand movement (e.g., a button press) is associated with contralateral neural activation. Presenting
another challenge, individual differences in cognitive style may result in differential activation
patterns (Miller et al., 2009; Miller, Donovan, Bennett, Aminoff, & Mayer, 2012). Therefore
individual characteristics such as subject handedness, gender, and cognitive style should either
be standardized as best as possible across subjects, modeled as a covariate, or used as a variable
for examining group differences. As a final consideration, while many communication studies
may have large samples that seek to approximate a given population, the practicalities of con-
ducting fMRI studies (e.g., cost and time) often constrain sample size. Thus, it is common to
see brain imaging studies with a small number of participants that do not necessarily reflect a
larger population. Meticulously specifying subject inclusion and exclusion criteria helps inform
the sort of inferences that might be made about a given sample in an fMRI study. Despite small
sample sizes, however, researchers have developed procedures that maximize statistical power
and efficiency in fMRI experiments (Liu & Frank, 2004; Liu, 2004).

Experimental Paradigm. Once the sample has been described, researchers must specify the
nature of the experimental paradigm. For studies that utilize a block design, researchers should
report the number and duration of all blocks and periods of rest within a given procedure. In addi-
tion, researchers should specify the psychological process each block sought to elicit as well as
how periods of rest were defined (e.g., closed eyes, black screen, black screen with a fixation
point). Answering these questions should include detailed information about the stimuli utilized,
behavioral measures, and the extent to which stimuli were repeated. Studies that employ an event-
related design should include similar information about the nature and meaning of stimuli and
elicited behavior. These studies must also explain how events are conceptually and operationally
defined as well as the duration of each event and the ISI. In some less common cases, studies
may combine both block and event-related designs, which requires reporting all of the above
information.

Studies that utilize block or event-related designs rely on an analytical logic where multiple
trials are aggregated in order to achieve sufficient statistical power. In some designs, researchers
may choose to expose subjects to all trials all in one, uninterrupted sequence (called a “run”
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14 R. WEBER ET AL.

in fMRI experiments). However, this approach has two potential drawbacks. First, long runs
consisting of multiple trials may unnecessarily fatigue subjects. Second, the fMRI scanner heats
up over time and this heat creates magnetic field distortions that add additional noise to data.
In order to avoid these complications, subjects are often exposed to trials across a number of
runs. When multiple runs are used in a study, researchers must report the number of runs, the
duration of each run, and what trials occurred in what run.

fMRI Data Acquisition. Although, as mentioned above, a skilled technician should be
trusted to select appropriate scanner settings, it is relevant to report information about the scanner
settings as this provides readers with an understanding of what sort of machine the data were
collected with and a variety of information that assists in interpreting study design, data analysis,
and results. For instance, the TR between full brain scans provides readers with information about
spatial and temporal tradeoffs and the number of scans per stimulus presentation. For example,
if relevant stimulus features (e.g., shooting vs. non shooting when playing a violent video game)
vary at a higher frequency than the scanner is recording data (e.g., shooting every 1s, but scanner
TR is 2s), then individual shooting events cannot be resolved with this fMRI sequence.

Other scanner settings may have less impact on the way in which a reader might inter-
pret the results of a given study but are still relevant for replication purposes. Therefore, a
manuscript should report the following information: scanner manufacturer and model, magnetic
field strength, TR, echo time (TE; the time between a RF pulse and magnetic resonance signal
sampling), flip angle (the degree to which a RF pulse knocks atomic nuclei off the axis of equi-
librium), number of slices, slice thickness, gap between slices, slice order, field of view (FOV;
the physical size of an image, reported in cm2), and matrix size (FOV for a given slice, reported
as a grid). Communication scholars can simply ask the fMRI technician for a printout of these
scanner parameters. For a more detailed overview of these settings and their implications, see
chapter two in Lazar (2008).

Preprocessing

What Is the Purpose?

A series of image preprocessing steps must be carried out prior to statistical analysis (see
Strother, 2006, for an overview). In order to meaningfully aggregate and compare fMRI data,
the brain must have the same alignment and internal structure in each volume to be analyzed.
Furthermore, some basic transformations are needed to account for quirks in how the scanner
collects the images, and filters can be applied to improve the ratio of signal to noise in the data,
easing subsequent analysis. Commonly referred to as a “preprocessing pipeline”, this procedure
consists of any data treatment that does not depend on specific hypotheses. For a more detailed
overview of the statistical underpinnings of these preprocessing steps, we direct interested readers
to Ashby (2011, chap. 4).

How Does It Work?

In what follows, we describe a preprocessing pipeline that may be well suited for many com-
munication studies. Of course, no single solution will apply to all studies, and these steps may
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BRAIN IMAGING IN COMMUNICATION RESEARCH 15

become outdated as newer methods emerge. However, as of this writing, these steps represent a
benchmark by which fMRI studies in communication research should be evaluated.

Basic Quality Control. As an initial step, common-sense data quality control should be
applied – checking the images for major acquisition artifacts (e.g., thin bands of light and dark
across the entire image) and excluding participants with obviously questionable data (e.g., those
who fell asleep or disengaged mid-session, which is not uncommon). Additionally, image ori-
entation should be checked and corrected if necessary to match standard convention, and brain
extraction should be performed to strip out the skull, dura, and other extraneous non-brain tissue.

Slice-Timing Correction. Another fundamental step in preprocessing is slice-timing cor-
rection (Sladky et al., 2011). While each volume is considered to represent a single time point,
the entire volume is not captured instantaneously by the scanner. Rather, data are collected as
a set of individual two-dimensional slices during a TR, which are then assembled into the full
three-dimensional volume for that TR. Slice-timing correction should be applied to account for
small differences in the timing of slice acquisition. The details of how slices are acquired depend
on the configuration of the scanner. For instance, slices might be gathered consecutively from
1 to n, or in an interleaved pattern where all odd-numbered slices are collected, then all even-
numbered ones. Suppose that a particular scanner takes 32 slices per TR and that a subject is
exposed to a stimulus at the onset of a given TR. We know that the hemodynamic response is
slow, therefore the BOLD response in once slice may differ from BOLD responses in other slices
within the same TR as well as across multiple TRs. Slice timing correction works to correct this
inconsistency by making assumptions as to what a BOLD response should be for a given slice
within a given TR.

Motion Correction and Standardization. All the brain images must all be aligned to a
common space so that specific regions of that space can be compared. However, several math-
ematical transformations are necessary to accomplish this. Head motion inside the scanner is
inevitable, so a motion-correction procedure must be applied to keep head alignment consis-
tent throughout the time-series of volumes for a given participant. Differences in overall mean
signal intensity between volumes would be problematic for analysis as well, so signal intensity
standardization is usually applied to maintain a consistent mean.

Registration

A two-step registration procedure is commonly employed to maintain a consistent space for
analysis. First, a participant’s functional images are aligned with the high-resolution anatomical
scan collected at the beginning of the scanning session. Functional scans provide useful informa-
tion about neural activity but poor information about neural structure. This can make it difficult
to identify the exact structural location of neural activity identified during functional scanning.
To solve this issue, the high-resolution structural scans must be coregistered to the compara-
tively low resolution functional scans. Since voxel sizes and imaging parameters differ between
both scans, modern automated algorithms apply a series of transformations to maximize image-
intensity correlations between the two images. The boundary-based registration (BBR) procedure
(Greve & Fischl, 2009) implemented in most fMRI analysis software packages (see below) is a
good coregistration solution. Second, because the precise size and shape of brain regions vary
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16 R. WEBER ET AL.

substantially across individuals, the images are then registered with a nonlinear transformation to
match a “standard brain,” such as the common MNI152 template (http://www.bic.mni.mcgill.ca/
ServicesAtlases/HomePage). This process is called normalization.

Spatial and Temporal Filtering. Spatial and temporal filters are applied to improve signal
quality in the data. The BOLD signal in one voxel may differ substantially from BOLD signal in
neighboring voxels. Such differences introduce noise into the data and violate assumptions about
the normal distribution of signal and noise common to statistical tests employed in most brain
imaging analyses. Spatial smoothing is a process for dealing with these issues. For instance, a
spatial filter can be applied to smooth areas of activation by taking a weighted average of intensity
in a neighborhood of voxels of a certain size, commonly 5mm or 7mm.

Temporal filtering is used to remove noise from sources unrelated to the process of interest.
The period of the signal induced by communication science studies is typically on the order of
many seconds—if the stimulus changes every 15 seconds, for example, the response signal should
have an expected frequency of approximately 0.067Hz. Much lower frequencies will contribute
noise and should be filtered out. For instance, physiological changes in the body as well as thermal
and magnetic changes in the scanner produce low-frequency noise. This noise is typically less
than 0.015Hz (Smith et al., 1999), including steady (0Hz) linear drift, and can be removed by
applying a high-pass temporal filter.

What Should Be Reported And What Can Go Wrong?

Generally speaking, preprocessing steps will remain the same between experiments (Ashby,
2011) and will vary slightly among different research labs and scanner configurations.
Researchers should first specify what software package was used to preprocess fMRI data.
Two common choices are the freely available Oxford Center for Functional MRI of the Brain
(FMRIB) Software Library (FSL; http://www.fmrib.ox.ac.uk/fsl) and the Wellcome Trust Centre
for Neuroimaging Statistical Parametric Mapping software package (SPM; http://www.fil.ion.ucl.
ac.uk/spm/); however, other packages such as AFNI (National Institute of Mental Health; http://
afni.nimh.nih.gov/afni/) and BrainVoyager (Brain Innovation; http://www.brainvoyager.com/) are
also available.

These software packages may be used in a variety of combinations to perform the most com-
mon preprocessing steps outlined above. Each step ought to be reported in an fMRI study, but this
description might consist simply of mentioning that the step was carried out using default settings
in a certain software package. Nonetheless, some specific configurations and their implications
are important to mention here.

Slice-Timing Correction. Slice-timing correction can be accomplished by a variety of inter-
polation methods. Sinc interpolation is a popular choice, implemented by default in both SPM
and FSL, as it also functions as an effective low-pass filter. Slice-timing correction can also be
omitted during preprocessing and instead occur during statistical analysis in the form of a tem-
poral derivative of an estimated hemodynamic response function. This process adds weighted
regressors to a design matrix that shift the predicted BOLD response forward or backward in
time to account for the order in which slices were collected. Slice-timing correction is crucial for
studies that employ an event-related design where subjects rapidly shift between tasks. Without
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BRAIN IMAGING IN COMMUNICATION RESEARCH 17

correction, these rapid shifts complicate estimates of the hemodynamic response. By comparison,
slice timing is less critical for block designs with a slow time-course separated by periods of rest.

Head Motion Correction

Head movement can dramatically impact the strength of a BOLD signal when blood sat-
urated brain regions are shifted outside of the brain or to a location previously occupied by
bone or air (Huttel et al., 2014). Fortunately, SPM, FSL, and MATLAB have procedures that
attempt to resolve head motion issues by realigning each volume along the x, y, and z, axis.
Researchers should report what algorithms were used to correct for head motion as well as
instances where particular volumes were omitted due to excessive head motion that could not
otherwise be corrected.

Registration

Analysis often requires that brains are not only rotated, but warped to fit a standard size and
shape. Linear transformations represent a useful first-step in accomplishing this goal but the
process of registering an individual brain to a standard template benefits from the use of non-
linear transformations. Generally speaking, the default settings are sufficient to carry out these
procedures.2

Spatial Smoothing. There are a handful of approaches for dealing with spatial smoothing
but the most common kernel utilizes a full width at half maximum (FWHM) Gaussian function.
Determining the correct size of a spatial smoothing kernel presents a challenge to researchers.
Applying too large a kernel may combine distinct signals thus limiting the ability to detect unique
activation in neighboring structures. Choosing too large a kernel can also increase noise in the
data. If one voxel containing task relevant signal is surrounded by others containing only noise, a
large kernel will essentially replace signal in the voxel of interest with noise. Similarly, stud-
ies interested in examining very small brain structures must select a kernel small enough to
distinguish activation in these structures. On the other hand, choosing too small a kernel may
insufficiently reduce noise, thereby suppressing task related activation. Absent any special con-
siderations, Ashby (2011) recommends choosing a kernel that is 1–3 voxel widths in size. In many
of today’s scanners, this is a 7 mm FWHM kernel.

Temporal Filtering. Recall that temporal filtering accounts for small low-frequency noise
that may result from gradual changes in the scanner’s magnetic field (Smith et al., 1999). When
applying a temporal filter, researchers must carefully specify what frequency ranges are filtered
out. For block designs, a general rule of thumb (see Ashby, 2011) is that a temporal filter should
account for twice the period of the task plus rest. So, a block design with a 15-second task
followed by 15 seconds of rest should filter out frequencies longer than one minute (0.0167Hz).
A shorter filter risks excluding task-related data. This issue is less problematic in event related
designs where periods of task and rest shift rapidly.

2Klein et al. (2009) conducted an analysis of normalization algorithms. While the normalization procedures utilized
in FSL are outclassed in accuracy by other algorithms, they should suffice for typical studies in communication research.
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18 R. WEBER ET AL.

Other Preprocessing Steps. There are several other steps that can be included a part
of a preprocessing pipeline. For instance, in addition to temporal filtering, magnetic field
inhomogeneities resulting from pockets of air in subjects (e.g., sinus cavities) and scanner drift
(Smith et al., 1999) can be corrected using a B0 unwarping procedure. In this process gradient
field maps are captured at various time points during a scanning sequence, and these field maps
are then used to correct for magnetic field distortions. While this may be a crucial step for data
collected on older scanners, the increased number of steps and computational time may not be
justified on more modern systems.

Grand-mean scaling is another process that normalizes the overall mean BOLD response
across all scanning sessions. This process corrects for session-by-session inhomogeneities in
magnetic field strength as well as differences individual differences cerebral blood flow, thereby
improving subsequent combination of results across sessions and subjects. Grand-mean scal-
ing is implemented by default in both SPM and FSL. Whereas grand-mean scaling should be
carried out in most communication studies, other approaches such as global normalization pro-
cedures should be avoided as they have been shown to bias experimental results in fMRI studies
(Gavrilescu et al., 2002; Murphy, Birn, Handwerker, Jones, & Bandettini, 2009). Therefore dis-
abling grand-mean scaling or applying global normalization techniques in fMRI studies requires
additional justification.

Basic Data Analysis

What Is the Purpose?

Once preprocessing is complete, researchers can turn their attention to data analyses designed
to test study hypotheses. Just as with any other study, the raw data of fMRI do not speak for
themselves—they must be interpreted by applying an analytical procedure. Under the traditional
paradigm of fMRI, brain activity is contrasted between conditions using straightforward subtrac-
tion logic: the process of interest is described by the difference in activation between treatment
and control conditions. A General Linear Model (GLM) regression analysis is applied to model
and assess the statistical significance of those differences. The researcher creates a standard GLM
design matrix which models the timing of the stimulus, and that model is used to generate a set
of parameter estimates (PEs) to predict BOLD signal change (brain response).

Broadly speaking, fMRI analysis typically adopts either a whole-brain approach or a region of
interest (ROI) approach. On one hand, whole-brain analyses attempt to identify the specific brain
regions activated by a given stimulus from among all possible regions across the entire brain. The
corresponding statistical technique has been termed statistical parametric mapping (SPM). SPM
is mostly an explorative procedure; it is performed without prior hypotheses about likely brain
activity patterns. On the other hand, a ROI analysis usually relies on theoretically or empirically
derived a priori assumptions about what brain structures should be associated with the process at
hand. Having a well-defined ROI reduces the number of voxels or brain areas to be analyzed and
provide a stronger theoretical basis than exploratory whole-brain analysis.

There are two major procedures to select ROIs. First, specific anatomical ROIs can be iden-
tified based on the findings of previous brain imaging studies or meta-analyses that summarize
brain activity patterns from other studies using similar stimuli (e.g. activation in response to a
cognitive control task; see http://neurosynth.org for a database of brain imaging meta-analyses).
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BRAIN IMAGING IN COMMUNICATION RESEARCH 19

Second, functional ROIs can be identified within the same study (see Berkman & Falk, 2013).
Suppose a communication researcher wants to examine whether playing a racing video game has
an effect on cognitive control. In this scenario the researcher can expose participants to two inde-
pendent tasks or stimuli within the same study: one to localize the relevant functional ROI with
an independent, well-established go/no-go localizer task, and another that contains the concept
of interest (playing a racing video game). Subsequently, time-series analyses can test the hypoth-
esis whether playing a racing game causes changes in the independently localized region that
processes cognitive control.

How Does It Work?

In fMRI research, data analysis is often broken down into a series of smaller analyses. Data
for individual subjects are first fitted to a model in a first-level analysis. Subsequent higher-level
analyses may combine data for the subjects across multiple runs or combine data for multiple sub-
jects within the same group. The first step involves modeling preprocessed data for an individual
subject. In studies where subjects are exposed to just one run, there is just one first-level analysis
per subject. Conversely, in studies where subjects are exposed multiple runs, there are multiple
first-level analyses per subject. But what exactly is modeled?

The hemodynamic response and corresponding changes in BOLD signal should increase in
task sensitive voxels during periods of task compared with periods of rest. Therefore a simple
hemodynamic response estimate might look like a boxcar; elevated and sustained activation dur-
ing task followed by lesser activation during periods of rest. Such a model predicts task relevant
increases in activation that start immediately during a stimulus block and end immediately during
periods of rest. In actuality, the hemodynamic response is delayed; it can take up to six seconds
before a region reaches full oxygen saturation. Moreover, the hemodynamic response tapers off
over time. Accordingly, hemodynamic response models are made more accurate when a boxcar
function is convolved with a hemodynamic response function (HRF) that accounts for delayed
changes in blood oxygen saturation levels.

These predicted responses are modeled as regressors in a standard GLM. In fMRI analysis
these regressors are commonly referred to as explanatory variables (EVs). If a study has two
experimental conditions, each condition may be modeled as an EV. These EVs, as well as any
other variable a researcher want to account for (e.g., confounding variables, corrections for typical
fMRI noise sources such as scanner drift) comprise the design matrix of a basic GLM. To provide
a basic example, consider the process for conducting a simple GLM analysis using, for instance,
the popular fMRI analysis package FSL. Imagine a model using a single factor with two levels.
This model yields a design matrix with two EVs and as many rows as there are volumes (or
time points) in the data. Each row of the design matrix encodes the factor level at the time that
volume was collected: [1 0] for condition A, [0 1] for condition B. Significance testing is then
carried out in accordance with some defined contrasts of parameter estimates (COPEs). Each
contrast is a set of weights to be applied to the EVs of the design matrix. In our example, a
[1 -1] contrast corresponds to the difference in activation when subtracting condition B from
condition A, that is, what brain regions are more active during condition A than condition B. The
output of this procedure is a map of t-statistics, which can be transformed to z-statistics (z-map)
and then thresholded at a certain significance level to identify voxels with statistically significant
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20 R. WEBER ET AL.

activation. Those areas of activation will ostensibly indicate the brain regions associated with
condition A but not condition B.

What Should Be Reported and What Can Go Wrong?

When reporting a standard GLM analysis, researchers should report information about first-
and higher-level analyses. These aid readers in understanding how models were calculated, how
contrasts are calculated, and how relevant parameters were estimated, both for whole-brain as
well as ROI analysis.

First-Level Analysis. Data for each run for each subject should be fitted to a GLM that at
a minimum includes EVs, their temporal derivatives (to account for response latency), confound
variables (head motion, covariates), and an error term. Contrasts must also be specified in a first-
level analysis.

Each EV must be convolved with an HRF. The simplest strategy models an estimation of
what a hemodynamic response might look like (e.g., a gamma function). However, this approach
may rest on shaky assumptions. Different brain regions (Schacter, Buckner, Koutstaal, Dale, &
Rosen, 1997) and subjects (Aguirre, Zarahn, & D’esposito, 1998) may have different hemody-
namic responses to the same stimulus. These differences add noise to the data that may: (1) reduce
the ability to detect task related activation, and (2) pose challenges for studies attempting to
discriminate which neural structures are associated with a given mental process (Ashby, 2011).
Nevertheless, this is among the most commonly applied approaches and is most likely suitable for
block designs. Event-related designs may consider a more sophisticated strategy. Flexible HRF
models apply several free parameters to HRF estimation in an attempt to correct for different
hemodynamic responses across brain regions and individual subjects.

An additional concern that must be overcome in a first-level analysis is autocorrelation within
the time-series data. The state of the brain does not reset from one TR to the next; BOLD sig-
nal is correlated with itself over time. However, accurate parameter estimation requires that the
error term in the correctly-specified GLM contains “white,” or random, noise. There are two
basic approaches to handling this problem: precoloring and prewhitening. Precoloring uses low-
pass temporal filtering to induce known autocorrelation that will overwhelm other noise. While
the result is unbiased, it is necessarily inefficient (Woolrich, Ripley, Brady, & Smith, 2001).
The alternative, prewhitening, attempts to estimate and then remove the autocorrelation from
the data. While accurate estimation of autocorrelation was once seen as somewhat problematic,
well-tuned estimation techniques have made prewhitening a widely-used solution to correct for
autocorrelation (Woolrich et al., 2001).

Higher-Level (Group) Analysis. Once data for each participant are fitted to a GLM, these
individual first-level analyses must be combined in higher-level group analyses. There are several
statistical procedures for combining data in higher-level analyses. Generally speaking, analyses
that rely on a mixed effects approach are more readily generalizable than those that rely on a
fixed effects procedure (Beckmann & Smith, 2004; Woolrich, Behrens, Beckmann, Jenkinson, &
Smith, 2004; Woolrich, 2008).

Additional EVs and contrasts may be specified at this stage. For instance, researchers testing
group differences may choose to model each group as an EV and then contrast one group against
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BRAIN IMAGING IN COMMUNICATION RESEARCH 21

another. This contrast between groups is a crucial step because it avoids a common statistical fal-
lacy. Suppose that group A shows one activation pattern to a given stimulus and group B shows
a different activation pattern to the same stimulus. While the activation patterns are visually dif-
ferent, they are not statistically different as they were never directly compared. These differences
in activation between groups can occur for a variety of reasons. Contrasting activation associated
with group A from that associated with group B is the only way to tell if one group is statistically
different from another.

Multiple Testing. The simplest formulation of the GLM-based significance test contains
a crucial flaw which must be avoided. Each fMRI data volume has a huge number of voxels,
and therefore the significance threshold must be adjusted to account for multiple comparisons:
with around 100,000 voxels being tested, an uncorrected p-value threshold of 0.05 is essentially
meaningless, since thousands of voxels will appear to be significant purely by chance. To demon-
strate the extent of this problem, a highly entertaining study from Bennet, Baird, Miller, and
Wolford (2010) imaged a dead salmon’s brain during an “open-ended mentalizing task” and
found an 81mm3 area of (obviously spurious) activation with a significance level of p < 0.001.
After correcting for multiple testing using family-wise error rate (FWER) based on Gaussian ran-
dom field (GRF) theory, they found no results. GRF-based correction, particularly cluster-based
thresholding, has become standard, offering a less-conservative alternative to simple Bonferroni
correction (Smith & Nichols, 2009). Because the GRF approach utilizes resolution elements
(resels) that depend on the smoothness of the image, applying an appropriate spatial filter during
preprocessing is especially important when using this method of correction.

Whole Brain and ROI Analysis. Whole brain analyses often report neural activation that
survives statistical thresholding after correction for multiple comparisons. These activations occur
in so-called clusters. Clusters represent the location of statistically significant neural activity
associated with a specific contrast. The anatomical basis of these clusters is then determined
by cross-referencing either the maximum z-statistic or center of gravity coordinates with an atlas.
Importantly, this only works when results have been normalized to a standard brain template (e.g.,
MNI152).

Researchers who conduct ROI analyses are often interested in understanding signal changes
within a given ROI. Both FSL and SPM have procedures for calculating signal change within a
ROI. These signal change estimates are quite small; a change in signal of just 1.5% is generally
considered a large change. While signal change is easily calculated for block designs, it is more
difficult to calculate in event-related designs. Ashby (2011) offers a more detailed discussion of
approaches for calculating percent signal change for event-related designs.

Visualizations. Visual presentations of fMRI results can help readers understand the loca-
tion and intensity of neural activation. The interpretability of these figures and tables is greatly
enhanced by including a few critical pieces of information. When reporting activation tables,
authors should include information about the cluster size, coordinates of maximum z-statistic
(Max-Z) and/or center of gravity (COG), structure at Max-Z or COG, and specify what atlas was
used. Figures that visualize neural activation should include information to orient readers (e.g.,
sagittal, coronal, and axial views). When significant clusters are overlaid on a standard brain
template, researchers should specify the statistical threshold and multiple comparison correction
applied as well as the normalized coordinate space (most likely MNI152). The BrainNet (Xia,
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Wang, & He, 2013) visualization tool is free and useful for demonstrating these results. If suffi-
cient space is available, researchers may also choose to include a figure detailing the experimental
procedure. This visualization should include information about the order and duration of periods
of task and rest. Finally, fMRI studies often contain more information than can be reported in
the standard journal article. These data should be included as supplementary data, if the journal
allows for it.

Voodoo Correlations. One issue in fMRI data analysis that readers should be aware
of is so-called “voodoo” correlation (Vul, Harris, Winkielman, & Pashler 2009a, 2009b).
Vul et al.’s controversial paper demonstrated that studies correlating neural activation with
nonindependent behavioral measures are at risk of reporting inflated or possibly even spu-
rious results (but see Lieberman, Berkman, & Wagner, 2009). Small sample sizes may also
account for these inflated correlations (Yakoni, 2009). Even more troubling, the effects iden-
tified in small sample studies may under represent the true effects present in a population
and give the false impression that a neural region is highly selective for a specific cogni-
tive process. In this context, it has been suggested that a sample size of 50 or more may
be necessary for studies seeking to test individual differences in neural activation. Given that
a standard fMRI study in communication needs an average of about $1,000 per participant,
a budget of up to $50,000 would be needed for just using the MRI facility to meet this
requirement.

Advanced Data Analysis

While the GLM-based subtraction logic has provided many important insights and is oftentimes
the most sensible approach, we would be remiss to neglect the many alternative approaches, some
of which are of particular importance for communication science. In this section, we provide a
brief overview of alternatives to the GLM approach. To introduce these alternatives, a distinction
should be made between models that encode or decode brain states (Naselaris, Kay, Nishimoto,
& Gallant, 2011). We explained that brain mapping through techniques like SPM do not con-
stitute mind-reading: experimenters present a stimulus designed to induce a given mental state
and then observe brain activity that encodes that state. In other words, this approach can predict
brain states based on mental states, but cannot predict mental states based on brain states. Only
recently have researchers begun to reverse the procedure – using brain activity to decode mental
states.

The most well-known technique for brain decoding is multi-voxel pattern analysis (MVPA).
In contrast to the traditional voxel-by-voxel significance-testing approach explained above,
MVPA searches for response patterns that span multiple voxels, training a statistical classifier that
is sensitive to distributed patterns that represent information in the brain (Norman, Polyn, Detre,
& Haxby, 2006). One common technique to develop MVPA is the use of searchlight algorithms,
which look for spheres of activation around each voxel (Etzel, Zack, & Braver, 2013). In the sim-
plest case, the MVPA approach first builds a model of how a certain stimulus is encoded in the
brain then uses that model to discriminate between different stimulus types. Even more sophisti-
cated implementations are concerned with not only simple classification but full reconstruction –
for instance, predicting the details of a natural image participants looked at based on their brain
activity, even if the model was not trained using that specific image.
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The Gallant lab at UC Berkeley has conducted a program of research that utilizes decod-
ing extensively and to great effect (Huth, Nishimoto, Vu, & Gallant, 2012; Naselaris, Prenger,
Kay, Oliver, & Gallant, 2009; Naeselaris et al., 2011), including predicting visual features of
movies from brain activity with surprising fidelity (Nishimoto et al., 2011). For instance, using
a collection of natural images collected from the Internet, they produced a Bayesian recon-
struction algorithm that selects the known image which is most structurally and semantically
similar to a randomly-chosen image presented to a participant in an fMRI scanner. Similarly,
Haynes and colleagues have conducted decoding studies focused around free-will and hidden
intentions, using brain activity to predict attentional salience and decision-making behav-
ior (Bogler, Bode, & Haynes, 2011; Chen et al., 2010; Haynes et al., 2007; Soon, Brass,
Heinze, & Haynes, 2008). These results demonstrate that, by working beyond the subtraction
paradigm, “mind-reading” studies are now an extant, albeit nascent, area of research. At this
point, we can only speculate about the scientific and ethical implications of this innovative
work for core research areas in communication science that investigate deception detection and
persuasion.

Another important emerging method in fMRI analysis is inter-subject correlation (ISC) anal-
ysis, which measures between-subject voxel-wise correlations in the BOLD signal time-series
(Pajula, Kauppi, & Tohka, 2012). Like the GLM, ISC can be used to study encoding processes,
but from a different perspective. Whereas standard GLM analysis builds a model using a design
matrix to define the time-course of stimuli, ISC simply looks at commonalities in hemodynamic
response across individuals exposed to the same stimulus. This makes ISC especially well-suited
for the low-control stimuli commonly used in communication research, for which it is difficult
to define a precise a priori model of brain responses. Furthermore, a broad framework for under-
standing communication as interbrain coupling has emerged in recent years, most notably in
the work of Hasson and colleagues (Hasson et al., 2004; Hasson et al., 2008; Hasson et al.,
2012; Hasson, Ghazanfar, Galantucci, Garrod, & Keysers, 2012). According to this view, com-
munication selectively aligns brain states across individuals, so ISC analysis is a critical tool
for neuroimaging analysis in communication (e.g. Hasson et al., 2008; Stephens, Silbert, &
Hasson, 2010; see also Weber, Eden, & Mathiak, 2011). Hyperscanning techniques (Montague
et al., 2002), wherein multiple participants simultaneously undergo fMRI scanning while inter-
acting with each other, present additional exciting opportunities for communication researchers
to extend this line of research.

It is also worth noting another technique conceptually similar to ISC, functional connectivity
analysis, which compares time-series correlations in patterns of neural activation within individ-
uals (Friston, 1994). Connectivity between multiple brain regions is the norm in higher-order
cognitive processes. Functional connectivity analysis can be used to study how the brain inte-
grates information, while the standard subtraction logic focuses on how the brain segregates
information.

Finally, the application of a brain-as-predictor approach (see Falk, Cascio, & Coronel, 2015,
for more procedural details and specific examples) has yielded impressive results in studies of
media persuasion. In one notable example, the application of neuroimaging using a brain-as-
predictor approach doubled the explained variance in real-world health behavior compared to
self-report measures (Falk et al, 2011). Similarly, a recent study from our lab found that while
conventional non-neuronal measures could not significantly predict the persuasiveness of anti-
drug ads for high-risk targets, a brain-as-predictor model could (Weber et al., 2015).
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CONCLUSIONS AND OUTLOOK

Methods specific to fMRI data collection and analysis are in a continuous state of development.
In this exciting time, no single paper can capture the expansive nature of fMRI research, nor can
any paper hope to foresee important changes in methodological possibilities and best-practices.
Instead, our primary goal for this paper is to provide communication scholars with reasonably
advanced guidelines for understanding and critiquing studies that utilize fMRI. We urge com-
munication scholars to extend the ideas discussed herein and draw upon existing expertise to
contribute methodological advances to brain imaging research.

Moreover, we hope that this article motivates and enables communication scholars to engage
in the first steps towards designing and conducting an fMRI study. We realize that for many
communication scholars fMRI data collection may not seem to be within their reach, but with
the advent of publicly available brain imaging data repositories (“Focus on Big Data,” 2014;
Gomez-Marin, Paton, Kampff, Costa, & Mainen, 2014; Turner, Eickhoff, & Nichols, 2014) it is
not unlikely that communication scholars will soon be able to analyze existing fMRI datasets
and take advantage of this new methodology for addressing original communication research
questions.

More broadly, we hope that this paper demonstrates that the ability to conduct brain imaging
research using fMRI is attainable for communication scholars. Whereas communication schol-
ars began to insource physiological research in the past few decades, we hope that these next
few decades are ones where our discipline begins to insource and innovate various brain imaging
techniques, fMRI included. As shown in this article, fMRI studies cannot resolve all communica-
tion questions. Yet, looking at recent research in communication and media neuroscience cited in
this article as examples, we are confident that this methodological tool provides a new avenue for
testing and refining communication theory. We hope that our fellow researchers read this article
as an invitation to engage and collaborate in fMRI research.

REFERENCES

Aguirre, G. K., Zarahn, E., & D’esposito, M. (1998). The variability of human, BOLD hemodynamic responses.
NeuroImage, 8(4), 360–369.

Anderson, D. R., Bryant, J., Murray, J. P., Rich, M., Rivkin, M. J., & Zillmann, D. (2006). Brain imaging–a new approach
to studying media processes and effects. Media Psychology, 8, 1–6.

Anderson, D. R., Fite, K. V., Petrovitch, N., & Hirsch, J. (2006). Cortical activation while watching video montage: An
fMRI study. Media Psychology, 8(1), 7–24.

Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews
Neuroscience, 11(4), 284–292.

Ashby, F. G. (2011). Statistical analysis of fMRI data. Boston, MA: MIT Press.
Aue T., Lavelle, L. A., & Cacioppo, J. T. (2009). Great expectations: What can fMRI research tell us about psychological

phenomena? International Journal of Psychophysiology, 73(1), 10–16.
Bavelier, D., Green, C. S., Han, D. H., Renshaw, P. F., Merzenich, M. M., & Gentile D. A. (2011). Brains on video games.

Nature Reviews, 12(12), 763–768.
Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance

imaging. IEEE Transactions on Medical Imaging, 23(2), 137–152.
Bennett, C. M., Baird, A. A., Miller, M. B., & Wolford, G. L. (2010). Neural correlates of interspecies perspective taking

in the post-mortem atlantic salmon: An argument for proper multiple comparisons correction. Journal of Serendipitous
and Unexpected Results, 1, 1–5.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 2

0 
M

ar
ch

 2
01

5 



BRAIN IMAGING IN COMMUNICATION RESEARCH 25

Berkman, E. T., & Falk, E. B. (2013). Beyond brain mapping: Using the brain to predict real-world outcomes. Current
Directions in Psychological Science, 22(1), 45–55.

Bogler C., Bode, S., & Haynes, J. D. (2011). Decoding successive computational stages of saliency processing. Current
Biology, 21(19), 1667–1671.

Cacioppo. J. T., Lorig, T. S., Berntson, G. G., Norris, C. J., Rickett, E., & Nusbaum, H. (2003). Just because you’re imag-
ing the brain doesn’t mean you can stop using your head: A primer and set of first principles. Journal of Personality
and Social Psychology, 85(4), 650–661.

Chee, M. W., Venkatraman, V., Westphal, C., & Siong, S. C. (2003). Comparison of block and event-related fMRI designs
in evaluating the word-frequency effect. Human Brain Mapping, 18(3), 186–193.

Chen, Y, Namburi, P., Elliott, L. T., Heinzle, J., Soon, C. S., Chee, M. W., & Haynes, J. D. (2010). Cortical surface-based
searchlight decoding. Neuroimage, 56(2), 582–592.

Churches, O., Nicholls, M., Thiessen, M., Kohler, M., & Kaege, H. (2014). Emoticons in mind: An event-related potential
study. Social Neuroscience, 9(2), 196–202.

Coltheart, M. (2013). How can functional neuroimaging inform cognitive theories? Perspectives on Psychological
Science, 8(1), 98–103.

Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8(2–3), 109–114.
Davidson, D. (1992). Mental events. In B. Beakley & P. Ludlow (Eds.), The philosophy of mind: Classical

problems/contemporary issues (pp. 137–150). Cambridge, MA: MIT Press.
Dennett, D. C. (1991). Consciousness explained. Boston, MA: Little, Brown & Company.
DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D., & Winans, P. (1994). Functional magnetic resonance imaging (FMRI)

of the human brain. Journal of Neuroscience Methods, 54(2), 171–187.
Etzel, J. A., Zacks, J. M., & Braver, T. S. (2013). Searchlight analysis: Promise, pitfalls, and potential. Neuroimage, 78,

261–269.
Falk, E. B. (2012). Can neuroscience advance our understanding of core questions in communication studies? An

overview of communication neuroscience. In. S. Jones (Ed.), Communication at the center. New York, NY: Hampton
Press.

Falk, E. B., Berkman, E., Mann, T., Harrison, B., & Lieberman, M. D. (2010). Predicting persuasion-induced behavior
change from the brain. Journal of Neuroscience, 30(25), 8421–8424.

Falk, E. B., Cascio, C. N., & Coronel, J. C. (2015). Neural prediction of communication-relevant outcomes.
Communication Methods and Measures, 9(1–2), 5–29.

Falk, E., Berkman, E., Whalen, D., & Lieberman, M.D. (2011). Neural activity during health messaging predicts
reductions in smoking above and beyond self-report. Health Psychology, 30(2), 177–185.

Farah, M. J., & Hook, C. J. (2013). The seductive allure of “seductive allure.” Perspectives on Psychological Science,
8(1), 88–90.

Focus on big data. (2014). Nature Neuroscience, 17(11), special issue, 1429–1516.
Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1–2),

56–78.
Gavrilescu, M., Shaw, M. E., Stuart, G. W., Eckersley, P., Svalbe, I. D., & Egan, G. F. (2002). Simulation of the effects

of global normalization procedures in functional MRI. NeuroImage, 17(2), 532–542.
Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., & Mainen, Z. F. (2014). Big behavioral data: Psychology,

ethology and the foundations of neuroscience. Nature Neuroscience, 17(11), 1455–1462.
Greenwald, A. G. (2012). There is nothing so theoretical as a good method. Perspectives on Psychological Science, 7(2),

99–108.
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration.

NeuroImage, 48(1), 63–72.
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: Mechanism for

creating and sharing a social world. Trends in Cognitive Science, 16(2), 114–121.
Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J. (2008). Neurocinematics: The

neuroscience of film. Projections, 2(1), 1–26.
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during

natural vision. Science, 303(5664), 1634–1640.
Haynes, J. D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, D. (2007). Reading hidden intentions in the

human brain. Current Biology, 17(4), 323–328.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 2

0 
M

ar
ch

 2
01

5 



26 R. WEBER ET AL.

Huettel, S. A., Song, A. W., & McCarthy, G. (2014). Functional magnetic resonance imaging (3rd ed.). Sunderland, MA:
Sinauer.

Huth, A. H., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation
of thousands of object and action categories across the human brain. Neuron, 76(6), 1210–1224.

James, T. W., Lee, S., Lang, A., Kim, S., Stevenson, R. A., & Potter, R. (in press). How real is my avatar?: The influence
of character image realism on the neural substrates of face perception. Journal of Media Psychology.

Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C., . . . Parsey, R. V. (2009). Evaluation
of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., & Turner, R. (1992).
Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of
the National Academy of Sciences of the United States of America, 89(12), 5675–5679.

Lang, A. (2013). Discipline in crisis? The shifting paradigm of mass communication research. Communication Theory,
23(1), 10–24.

Lang, A., & Ewoldsen, D. (2013). Beyond effects: Conceptualizing communication as dynamic, complex, nonlinear, and
fundamental. In S. Allan (Ed.), Rethinking communication. Keywords in communication research (pp. 109–120). New
York, NY: Hampton Press.

Langleben, D. D., Schroeder, L., Maldjian, J. A., Gur, J. A., McDonald, S., Ragland, J. D., . . . Childress, A.R. (2002).
Brain activity during simulated deception: An event-related functional magnetic resonance study. Neuroimage, 15(3),
727–732.

Lazar, N. (2008). The statistical analysis of functional MRI data. New York, NY: Springer Science+Business Media.
Lee, K. M. (2004). Presence explicated. Communication Theory, 14(1), 27–50.
Lieberman, M. D., Berkman, E., & Wager, T. D. (2009). Correlations in social neuroscience aren’t voodoo: Commentary

on Vul et al. (2009). Perspectives on Psychological Science, 4(3), 299–307.
Liu, T. T. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types Part II: Design of

experiments. Neuroimage, 21(1), 401–413.
Liu, T. T., & Frank, L. R. (2004). Efficiency, power, and entropy in event-related FMRI with multiple trial types Part I:

Theory. Neuroimage, 21(1), 387–400.
Logothetis, N. K., & Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance

Imaging, 22(10), 1517–1531.
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the

basis of the fMRI signal. Nature, 412(6843), 150–157.
Mather, M., Cacioppo, J. T., & Kanwisher, N. (2013). How fMRI can inform cognitive theories. Perspectives on

Psychological Science, 8(1), 98–103.
Mathiak, K., & Weber, R. (2006). Toward brain correlates of natural behavior: fMRI during violent video games. Human

Brain Mapping, 27(12), 948–956.
McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: The effect of brain images on judgments of scientific

reasoning. Cognition, 107(1), 343–352.
Miller, M. B., Donovan, C.-L., Bennett, C. M., Aminoff, E. M., & Mayer, R. E. (2012). Individual differences in cognitive

style and strategy predict similarities in the patterns of brain activity between individuals. Neuroimage, 59(1), 83–93.
Miller, M. B., Donovan, C.-L., Van Horn, J. D., German, E., Sokol-Hessner, P., & Wolford, G. L. (2009). Unique and

persistent individual patterns of brain activity across different memory retrieval tasks. Neuroimage, 48(3), 625–635.
Mole, C., & Klein, C. (2010). Confirmation, refutation and the evidence of fMRI. In S. J. Hanson & M. Bunzl (Eds.),

Foundational issues of human brain mapping (pp. 99–112). Cambridge, MA: MIT Press.
Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., . . . Fisher, R. E. (2002).

Hyperscanning: Simultaneous fMRI during linked social interactions. NeuroImage, 16(4):1159–1164.
Morcom, A. M., & Fletcher, P. C. (2006). Does the brain have a baseline. Why we should be resisting a rest. NeuroImage,

37(4), 1072–1083.
Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal

regression on resting state correlations: Are anti-correlated networks introduced? NeuroImage, 44(3), 893–905.
Murray, J. P., Liotti, M., Ingmundson, P. T., Mayberg, H. S., Pu, Y., Zamarripa, F., . . . Fox, P. T. (2006). Children’s brain

activations while watching televised violence revealed by fMRI. Media Psychology, 8(1), 25–37.
Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. Neuroimage, 56(2),

400–410.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 2

0 
M

ar
ch

 2
01

5 



BRAIN IMAGING IN COMMUNICATION RESEARCH 27

Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L. (2009). Bayesian reconstruction of natural images
from human brain activity. Neuron, 63(5), 902–915.

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual experiences
from brain activity evoked by natural movies. Current Biology, 21(19), 1641–1646.

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of
fMRI data. Trends in Cognitive Science, 10(9), 424–430.

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on
blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868–9872.

Page, M. P. A. (2006). What can’t functional neuroimaging tell the cognitive psychologist? Cortex, 42(3), 428–443.
Pajula, J., Kauppi, J. P., & Tohka, J. (2012). Inter-subject correlation in fMRI: Method validation against stimulus-model

based analysis. PLOS One, 8(8), e41196.
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2),

59–63.
Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of functional MRI data analysis. Cambridge, UK:

Cambridge University Press.
Poldrack, R. A., Fletcher, P. C., Henson, R. N., Worsley, K. J., Brett, M., & Nichols, T. E. (2008). Guidelines for reporting

an fMRI study. Neuroimage, 40(2), 409–414.
Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.
Ramsay, I. S., Yzer, M. C., Luciana, M., Vohs, K. D., & MacDonald, A. W. (2013). Affective and executive network

processing associated with persuasive antidrug messages. Journal of Cognitive Neuroscience, 25(7), 1136–1147.
Schacter, D. L., Buckner, R. L., Koutstaal, W., Dale, A. M., & Rosen, B. R. (1997). Late onset of anterior prefrontal

activity during true and false recognition: An event-related fMRI study. NeuroImage, 6(4), 259–269.
Searle, J. R. (2004). Biological naturalism. In S. Schneider & M. Velmans (Eds.), The Blackwell companion to

consciousness (pp. 325–334). Chichester, UK: Wiley.
Sladky, R., Friston, K. J., Trostl, J., Cunnington, R., Moser, E., & Windischberger, C. (2011). Slice-timing effects and

their correction in functional MRI. Neuroimage, 58(2), 588–594.
Smith, A. M., Lewis, B. K., Ruttimann, U. E., Ye, F. Q., Sinnwell, T. M., Yang, Y., . . . Frank, J. A. (1999). Investigation

of low frequency drift in fMRI signal. Neuroimage, 9(5), 526–533.
Smith, K. (2012). fMRI 2.0. Functional magnetic resonance imaging is growing from showy adolescence into a workhorse

of brain imaging. Nature, 484(7392), 24–26.
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold

dependence and localisation in cluster inference. Neuroimage, 44(1), 83–98.
Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious determinants of free decisions in the human

brain. Nature Neuroscience, 11(5), 543–545.
Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker-listener neural coupling underlies successful communication.

Proceeding National Academy of Science USA, 107(32), 14425–14430.
Strother, S. C. (2006). Evaluating fMRI preprocessing pipelines. Engineering in Medicine and Biology Magazine, 25(2),

27–41.
Turner, J. A., Eickhoff, S., & Nichols, T. E. (2014). Sharing the wealth: Brain imaging repositories in 2015. Manuscript

in preparation.
Uttal, W. R. (2001). The new phrenology: The limits of localizing cognitive processes in the brain. Cambridge, MA: MIT

Press.
Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009a). Puzzlingly high correlations in fMRI studies of emotion,

personality, and social cognition. Perspectives on Psychological Science, 4(3), 274–290.
Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009b). Reply to comments on “Puzzlingly high correlations in fMRI

studies of emotion, personality, and social cognition.” Perspectives on Psychological Science, 4(3), 319–324.
Weber, R. (in press). Biology and brains – methodological innovations in communication science: Introduction to the

special issue. Communication Methods and Measures.
Weber, R., Eden, A., & Mathiak K. (2011, May). Seeing bad people punished makes us think alike: Social norm vio-

lations in television drama elicit cortical synchronization in viewers. Paper presented at the annual meeting of the
International Communication Association (ICA), Boston, MA.

Weber, R., Falk, E., & Eden, A. (in press). Brain, mind, and media: Neuroscience meets media psychology. Journal of
Media Psychology.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 2

0 
M

ar
ch

 2
01

5 



28 R. WEBER ET AL.

Weber, R., Huskey, R., Mangus, J. M., Westcott-Baker, A., & Turner, B. (2015). Neural predictors of message
effectiveness during counterarguing in antidrug campaigns. Communication Monographs, 82(1), 4–30.

Weber, R., Ritterfeld, U., & Mathiak, K. (2006). Does playing violent video games induce aggression? Empirical evidence
of a functional magnetic resonance imaging study. Media Psychology, 8(1), 39–60.

Weber, R., Sherry, J., & Mathiak, K. (2008). The neurophysiological perspective in mass communication research.
Theoretical rationale, methods, and applications. In M. J. Beatty, J. C. McCroskey, & K. Floyd (Eds.), Biological
dimensions of communication: Perspectives, methods, and research (pp. 41–71). Cresskill, NJ: Hampton Press.

Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E., & Gray, J. R. (2008). The seductive allure of neuroscience
explanations. Journal of Cognitive Neuroscience, 20(3), 470–477.

White, C. N., & Poldrack, R. A. (2013). Using fMRI to constrain theories of cognition. Perspectives on Psychological
Science, 8(1), 79–83.

Woolrich, M. W. (2008). Robust group analysis using outlier inference. NeuroImage, 41(2), 286–301.
Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling

for FMRI group analysis using Bayesian inference. NeuroImage, 21(4), 1732–1747.
Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling

of fMRI data. Neuroimage, 14(6), 1370–1386.
Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS

ONE, 8(7), e68910.
Yakoni, T. (2009). Big correlations in little studies: Inflated fMRI correlations reflect low statistical power - commentary

on Vul et al. (2009). Perspectives on Psychological Science, 4(3), 294–298.

APPENDIX A
Checklist for the Evaluation of fMRI Studies in Communication

Evaluation Criteria

Required Content

Rationale

Uses fMRI to advance communication theory and research (p. 7)
Uses fMRI to answer appropriate research question(s); select at least one (p. 8)

Is a mental process involved in communication localized to a specific network and is there a strong
justification for the relevance of a localization study?

Is activation for a previously localized mental process X associated with communication task Y?

Do different communication tasks engage the same/different neural systems?

Justifies any of the above by demonstrating that fMRI overcomes limitations inherent to other
methodological approaches (not strictly required but would strengthens the rationale)

Procedure is reported with sufficient detail to allow for replication

Reports participant demographics (p. 13)

Uses an adequate sample size (p. 13)

Includes details on scanner configuration (p. 14)
Pre-processing steps are well specified and include

Slice-timing correction (p. 15–16)

Head motion correction (p. 15, 17)

Coregistration and normalization procedures (p. 15–17)

Spatial smoothing (p. 16–17)

Temporal filtering (p. 16–17)

(Continued)
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APPENDIX A
(Continued)

Required Content

Main analysis includes details regarding

Design matrix for first- and higher-level analyses, including EVs (p. 19–20)

Type of inference for group-level analyses (p. 20–21)

Correction for multiple comparisons (p. 21)

(If applicable) How ROIs are identified and defined (p. 18–19)

(If applicable) How signal change parameter estimates are calculated (p. 21)
Results & interpretation

Contrasts are well defined and easily understood (p. 19–21)
If the study makes a reverse inference claim; select at least one (p. 8–10)

Demonstrates that the ROI is highly-selective for a specific mental process

A cautious interpretation of results is recommended
If the study reports group differences in neural activation; select at least one (p. 20–21)

Differences between groups are statistically tested

A cautious interpretation of results is recommended
Avoids common fallacies

Consistency fallacy (p. 9–10)

Mind reading (controversial, may be appropriate) (p. 9, 22–23)

Integrates results into the larger body of Communication theory and research (p. 7–8)

Additional Recommended Content

Provides a visual representation of study design including order of stimuli (p. 22)

Provides activation tables showing detailed cluster information including: coordinates of Max-Z/COG,
structure at Max-Z/COG, Max-Z statistic, cluster size, and specification of atlas used (p. 21–22)

Provides activation maps which include statistical thresholds (p. 19)

Discusses the inherent limits of fMRI and considers or incorporates non-fMRI data (p. 9–10)

Makes supplemental study materials available to other researchers (p. 22)

Makes pre-processed and/or raw fMRI data available to other researchers (p. 22)

Note. This checklist is designed to assist authors, reviewers and editors in the process of reporting and evaluating
an fMRI study. No checklist can include an exhaustive list of requirements for every study and not every requirement
on this checklist may be necessary for all fMRI studies. Therefore, we invite fellow researchers to extend or modify
our checklist. With this in mind, studies that do not include one or two of the requirements should not necessarily be
viewed as invalid or otherwise flawed. Instead, missing requirements should prompt requests for clarification, additional
analysis, further justification, or the cautious interpretation of results.D
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