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Neural Predictors of Message
Effectiveness during Counterarguing in
Antidrug Campaigns
René Weber, Richard Huskey, J. Michael Mangus,
Amber Westcott-Baker & Benjamin O. Turner

A substantial amount of research has focused on predicting the effectiveness of persuasive
messages. However, characteristics of both the message itself and its receiver can impact
theoretically predicted effects. For example, recent work published in this journal
demonstrated that issue involvement modulates the relationship between message
sensation value (MSV) and argument strength (AS). When exposed to anti-cannabis
public service announcements (PSAs), high-drug-risk individuals rate these messages as
having low effectiveness regardless of variation in MSV and AS. Accordingly, for high-
risk individuals, MSV and AS lose their predictive power in message design; moreover,
the all too common use of high MSV, high AS PSAs to dissuade drug use may be
ineffective, as high-risk viewers are more likely to engage in counterarguing. In this
paper, we use functional magnetic resonance imaging to investigate the neural correlates
of counterarguing. Subsequently, we employ a brain-as-predictor approach using neural
activation and self-report data to predict message effectiveness in two independent
samples. We demonstrate that by adding two neural predictors within the middle frontal
gyrus and superior temporal gyrus to self-report data, the prediction accuracy of message
effectiveness in high-drug-risk individuals during counterarguing can reach, and even
surpass, the prediction accuracy for low-drug-risk individuals.
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Three influential media persuasion theories—the elaboration likelihood model (ELM;
Petty & Cacioppo, 1986), the activation model of information exposure (Donohew,
Palmgreen, & Duncan, 1980), and the limited capacity model of motivated mediated
message processing (Lang, 2009)—have produced consistent results regarding the
cognitive, emotional, and behavioral effects of public service announcements (PSAs).
However, several recent studies have found interactions where the theoretically
predicted effects of a given message variable—such as the strength of an argument or
the degree to which a message is physiologically arousing—are conditional upon
other variables related to the message or to the audience members (e.g., Kang,
Cappella, & Fishbein, 2006; Lang & Yegiyan, 2008; Langleben et al., 2009; Stephenson
& Palmgreen, 2001).

In a recent article in this journal, our research group reported on multilevel
predictors of message effectiveness for anti-cannabis PSAs in an effort to test some of
these interactions (Weber, Westcott-Baker, & Anderson, 2013). Specifically, we
examined two important message features: (1) argument strength (AS; also argument
quality, claim strength, etc.), which ostensibly refers to an objective feature of the
argument that determines its persuasiveness, but is nearly always operationalized
using receiver ratings (O’Keefe, 2006) and (2) message arousingness, which is often
operationalized as message sensation value (MSV; Morgan, Palmgreen, Stephenson,
Hoyle, & Lorch, 2003), a content-analytical measure of message features thought to
elicit physiological arousal. Additionally, we examined the cross-level interaction
between these message features and the degree to which audience members were
involved in the issue topic (in this case, the degree of risk or involvement with
cannabis use).

Our group demonstrated that issue involvement strongly modulates the relation-
ship between MSV and AS. Participants with low drug risk showed an interaction
between MSV and AS, whereby the most information-dense messages (high MSV
and high AS) were of low effectiveness. High-drug-risk participants, on the other
hand, rated anti-cannabis PSAs as having low effectiveness regardless of variation in
MSV and AS. Both of these effects are consistent with the theories referenced above.
For low-risk participants, high-information messages are over-stimulating and
perceived as noxious. At the same time, high-risk participants are more likely to
engage in biased central processing to defend their beliefs from counterattitudinal
information, resulting in greater likelihood of counterarguing. Accordingly, for high-
risk individuals, MSV and AS lose their predictive power in message design, and the
main targets of antidrug campaigns will remain unpersuaded.

In the present study, we explore the neural correlates of resistance to persuasion in
high-risk individuals. Specifically, we seek to show that the universally low ratings that
high-risk individuals report for antidrug messages stem from a tendency to engage in
active counterarguing with the message. By adopting a brain-as-predictor approach
(Berkman & Falk, 2013), we demonstrate that when adding neural predictors to
traditional self-report data, the prediction accuracy of message effectiveness in
independent samples of high-drug-risk (counterarguing) individuals can reach and
even surpass the prediction accuracy of low-drug-risk (non-counterarguing)
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individuals. The following sections present reviews on the persuasion and campaign
literature related to counterarguing, a background on the current state of the field with
regard to understanding mental states and predicting behavior from neuroimaging
data, and a review of neuroimaging findings related to persuasion generally and health/
antidrug messages specifically.

Counterarguing as a Mechanism of Resistance to Persuasion

Counterarguing is one of many processes by which an individual can resist persuasion
(Wegener, Petty, Smoak, & Fabrigar, 2004). Resistance processes vary in the degree to
which they are conscious and effortful; for example, selective inattention to counter-
attitudinal messages is relatively effortless, whereas reactance—rejecting messages
based on a perceived threat to personal freedom (Brehm, 1966)—involves slightly more
cognitive effort and awareness. Biased central processing and generating counter-
arguments require a relatively high degree of conscious, effortful cognition. Because
counterarguing is effortful, distraction or other reductions in ability to elaborate reduce
this type of resistance (Buller, 1986; Petty & Cacioppo, 1986).

Relevant to the current research, Petty and Cacioppo (1979, 1986) noted that when
issue involvement is high, participants are motivated to defend their prior knowledge
and beliefs in the face of a counterattitudinal message by arguing with the message.
While biased in favor of prior belief, such elaboration involves cognitive effort and,
like relatively objective central processing, theoretically results in stable attitudes.
Research has further indicated that the more important the individual deems the
attitude to be, the greater the likelihood of counterargument (Zuwerink &
Devine, 1996).

The story of counterarguing and its effects is not simple. People are not always
successful in their attempts to resist persuasion, and resulting attitude valence,
stability, and confidence have been shown to depend on a number of additional
factors (Petty, Tormala, & Rucker, 2004). For example, individuals who successfully
resist strong arguments against their existing attitude show increased confidence in
their original attitude, though those exposed to weaker attacks show no change in
attitude confidence (Tormala & Petty, 2002). Follow-up research demonstrated that
this effect was moderated by negative elaboration—that is, counterarguing (Tormala
& Petty, 2004; see also Ahluwalia, Burnkrant, & Unnava, 2000). So, for individuals
motivated and able to defend their existing attitudes, AS seems to have a negative
impact on persuasive outcomes: individuals who successfully counterargue with
strong arguments are all the more committed to their original belief. As with the
interactions between AS and other variables reviewed above, this effect calls into
question the utility of strong arguments in health messages aimed at high-
involvement populations.

Exposure to persuasive messages in general and attitude-inconsistent messages in
particular results in self-reported physiological arousal and negative affect (e.g.,
Palmgreen et al., 1991; Raju & Unnava, 2006; Stephenson & Palmgreen, 2001;
Stephenson & Southwell, 2006; Yzer, Vohs, Luciana, Cuthbert, & MacDonald, 2011).

Neural Predictors of Message Effectiveness 3
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Raju and Unnava (2006) demonstrated that individuals who are more committed to
their prior belief are more likely to counterargue with a message as a means of reducing
negative arousal, whereas less committed individuals are more likely to reduce arousal
by changing their attitudes in the direction of the persuasive message. Moreover, they
found that physiological arousal serves as the motivating factor in engaging in effortful
elaboration. When individuals were given an opportunity to counterargue with the
message, the reported arousal levels were decreased relative to those who were not
given the opportunity.

In addition to general cognitive ability and motivation, the capacity to counterargue
also seems to draw upon self-regulatory abilities. Specifically, counterarguing involves
integrating and synthesizing information to avoid adopting a counterattitudinal
position. Importantly, self-regulatory abilities have been shown to have a limited
capacity (Muraven, Tice, & Baumeister, 1998). Wheeler, Briñol, and Hermann (2007)
showed that individuals who had engaged in a prior self-regulatory task generated
fewer counterarguments and showed reduced subsequent resistance to counter-
attitudinal persuasion than individuals who had not been ego-depleted, despite the
fact that ability to elaborate was otherwise high. The self-regulatory processes that
facilitate counterarguing are of particular importance for this study, since this
conceptualization suggests that neural activity in regions associated with self-related
executive processing should be more strongly activated during counterarguing. We
review several previous neuroimaging studies supporting this view below.

In summary, counterarguing seems to be one potential response to the
physiological arousal and negative affect that exposure to a counterattitudinal
message engenders, and is more likely (relative to changing one’s attitude) when
involvement is high and prior attitude is strong. Factors affecting ability (such as
distraction) and motivation (such as perceived self-relevance) to process centrally
affect the likelihood to counterargue, as does self-regulatory capacity. Our prior paper
(Weber et al., 2013) demonstrated that the interaction between AS and MSV works
as predicted: PSAs that combine high MSV with low AS were most effective among
low-risk participants, but this strategy falls apart among high-risk participants, who
merely report low perceived effectiveness for messages of all types. If this interaction
can be consistently demonstrated, then it is not only problematic to use traditional
high MSV, high AS ads to target to high-risk individuals but also difficult for
researchers and message designers to use variations in these constructs as predictors
of counterarguing and persuasive outcomes in high-risk participants in order to
study the mechanism of this process or to create more effective messages. However,
in this paper, we construct a method for using this contrast to detect neural correlates
and predictors associated with this mechanism, allowing an alternative means of
exploring this interaction. The next section introduces the current research
paradigms for studying neural correlates of relatively complex mental processes, as
well as a new approach for predicting real-world outcomes from neuroimaging data
in both individuals and in larger populations.
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Predicting Behavior from Neuroimaging Data

For the majority of the last two decades, researchers using functional neuroimaging
for social scientific research have concentrated upon brain-mapping studies where
the goal is to pinpoint brain areas, networks, and patterns of connectivity that are
involved in a given cognitive function. These types of studies involve using very
simple, well-controlled stimuli or manipulations to elicit a given cognitive function
reliably and, to the extent possible, without confound. Recently, researchers across
many fields have built on the body of knowledge generated by these brain-mapping
studies and have branched out to explore more complex and naturalistic stimuli.

Such studies, however, are not without their potential flaws and criticisms. One
major issue in moving away from the traditional paradigm is the reverse-inference
problem (Poldrack, 2006). In the traditional forward inference brain-mapping
paradigm, it is assumed that the study’s task or manipulation invokes only one
psychological process compared with the control condition. Thus, the presence of the
resulting brain activation (when “subtracting” the control condition) must be a result
of the psychological process invoked by that task. However, the reverse path is not one-
to-one. No brain area (or even network) is uniquely diagnostic for a given cognitive or
affective process. That is, any given area is likely to be involved in many different
psychological processes. Reverse inference occurs when a researcher uses findings from
prior neuroimaging studies to interpret the meaning of brain activation in response to a
different task in which the cognitive mechanisms are unknown or under study. In a
well-known example of faulty reverse inference, in a New York Times op-ed during the
2008 Presidential primary elections (Iacoboni et al., 2007), a group of researchers
interpreted functional magnetic resonance imaging (fMRI) scans of swing voters
viewing candidate speeches, claiming that activation in certain limbic areas indicated
specific feelings about the candidates in response to the campaign messages. In the
presence of a task or stimulus with unknown resulting psychological processes, brain
activation in a specific area cannot be used as evidence of what process takes place
during the task (such as what feelings swing voters experience in response to campaign
messages based on limbic activity). Because of this issue, making behavioral predictions
and inferring cognitive states based on brain responses (“brain-decoding”) has
historically been considered difficult, or even impossible.

Recent developments, however, have suggested that useful information about
cognitive states and consequent behavior can be extracted from brain-imaging data.
For instance, sophisticated research paradigms and analysis methods have allowed
researchers to not only map neural correlates of more complicated and higher-order
processes such as interpreting real-world experiences (Spiers &Maguire, 2007) but also
actually predict real-world behavioral outcomes such as music purchases (Berns &
Moore, 2012) and smoking-cessation intervention success (Falk, Berkman, & Lieber-
man, 2012; Falk, Berkman, Whalen, & Lieberman, 2011) from brain-imaging data.
Researchers have even begun to “decode” brain activation such as reconstructing crude
versions of what the participants “saw” in a stimulus image or video from functional
imaging data (Nishimoto et al., 2011).

Neural Predictors of Message Effectiveness 5
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Many of these methods involve data mining or the use of trained virtual neural
networks to identify the most likely interpretations of given patterns of activation
(for a review of current avenues of research in this direction, see Poldrack, 2011).
Another avenue—the brain-as-predictor approach (Berkman & Falk, 2013)—takes a
slightly different tack than the traditional brain-mapping paradigm. Rather than
investigating stimulus–response to infer the neural mechanisms of the mediating
cognitive state, the brain-as-predictor approach uses a multi-step method to pinpoint
relevant brain-activation patterns and uses these patterns to predict real-world
outcomes such as intelligence (Choi et al., 2008), language acquisition (Tan et al.,
2011), and consumer choices both at the individual level (Levy, Lazzaro, Rutledge, &
Glimcher, 2011; Tusche, Bode, & Haynes, 2010) and the population level (Berns &
Moore, 2012). Importantly, this paradigm involves a path of analysis that is not a
part of the traditional forward-inference technique—brain-imaging data are used to
predict self-report and behavioral outcomes.

In brain-as-predictor studies, brain maps related to the cognitive task of interest
are identified in one of a few ways, each of which can be thought of as falling under
traditional forward inference. For instance, in the test-validation approach—similar
in rationale to the process of performing exploratory and confirmatory factor
analysis on survey data—a task involving a known process may be tested on one
sample to identify the relevant activation pattern, and then the identified pattern is
confirmed and used as a predictor for behavioral outcomes in a separate sample
(Falk, Berkman, Mann, Harrison, & Lieberman, 2010; Falk et al., 2011). Another
method involves having participants (either in the same or a separate sample)
perform a localizer task—a task that engages the cognitive process of interest but is a
separate task from the manipulation under investigation (Chua et al., 2011)—in
order to identify the pattern of activation for the hypothesized cognitive process
before testing that pattern in response to the task of interest as a predictor for
behavioral and self-report measures. A final approach (adopted in this study) uses
neural activity in one sample to predict outcomes in an independent sample, thereby
ensuring that regions of interest (ROIs) are defined independently of the variable of
interest (Berns & Moore, 2012).

Importantly, none of the brain-as-predictor methods involve making the fallacious
logical leap inherent in reverse-inference: researchers are not merely “interpreting” a
pattern of activation as involving a given cognitive process based only on a casual
(and potentially cherry-picked) review of past findings involving those same brain
areas. Instead, a theoretical model of cognitive processes and their associated brain
activation patterns leading to behavioral outcomes is built and tested using
traditional, deductive hypothesis-testing methods.

The benefits of this approach are two-fold. First, neurophysiological correlates of
stimuli once considered to be too “complex” to study can be identified—that is,
mapping of processes involved in more complex cognitive and affective tasks can be
accomplished with the multi-step approach. Second, and perhaps more importantly
for fields like communication, real-world outcomes—and even population-level
predictions—can be explained with greater accuracy than is possible using traditional
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experimental and survey data (Falk et al., 2012), providing valuable insight into the
cognitive and affective mechanisms of psychological and social processes. This allows
researchers to test the formerly “black-box” intervening states involved in commun-
ication and other social processes—such as the cognitive and affective states involved
in the persuasion process—allowing scholars to refine theory and practitioners to
design better interventions based on these findings.

Neuroimaging Investigations of Persuasion and Health-message Effectiveness

One benefit to neuroimaging is the ability to bypass shortcomings in people’s ability
to accurately self-report attitudes and behaviors. An increasing number of
neuroimaging studies attempt to tackle unanswered questions in persuasion research
without requiring participants to engage in conscious introspection and self-
reporting. The following sections review the current research in neuroimaging and
persuasion/health-message effectiveness, identifying neural correlates associated with
persuasive outcomes and reviewing work using neuroimaging to predict actual
health-message persuasion outcomes in individuals and populations.

Neural Correlates of Persuasion and Health-message Effectiveness

As a complex, higher-order mental process, persuasion—or resisting persuasion—is
expected to involve a number of different brain areas and networks. Because (as
reviewed above) persuasion theory predicts both affective and cognitive processes in
response to persuasive messages, investigators have explored the neural under-
pinnings of both of these subprocesses.

Regarding affective responses, a recent meta-analysis of 24 fMRI studies showed
significant overlap in activation of brain areas associated with the processing of
affective and social information across different persuasion tasks (Cascio, Shumaker,
Beard, Albarracin, & Falk, 2014). Specifically, neural regions associated with reward/
positive valuation (ventral medial prefrontal cortex and ventral striatum), social pain/
negative valuation (anterior insula, dorsal anterior cingulate cortex, and sub-anterior
cingulate cortex), and salience detection (amygdala) were involved when participants
underwent influence and/or changed their attitudes and resulting behaviors. The
authors suggest that these commonalities in neural involvement across persuasion
tasks indicate that, rather than merely reporting socially desirable outcomes in
response to persuasion tasks (a possible explanation for outcomes in self-report data
alone), influenced individuals engaged affective processing systems and altered neural
responses to the attitude objects related to the persuasive messages.

Similarly, in a set of three studies examining the neural correlates of persuasion
across participant cultures (American and Korean) and across media types (text and
video), Falk and colleagues found that, across all three studies, feeling persuaded was
associated with increased activity in areas involved in auditory and language
processing (posterior superior temporal sulcus), in social and mentalizing tasks
(dorsal medial prefrontal cortex [DMPFC] and the temporal pole) and in selecting

Neural Predictors of Message Effectiveness 7
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among competing beliefs and memory representations (left ventral lateral prefrontal
cortex; Falk, Rameson, Kang, Ingaki, & Lieberman, 2009).

As predicted by persuasion theory and research, areas associated with self-referential
processing have also been implicated in persuasive outcomes. Specific to health
messages, Chua, Liberzon, Welsh, and Strecher (2009) varied the degree to which
smoking-cessation messages were tailored to the participant (high vs. low tailoring
within participants, as well as a “generic”/no-tailoring condition) for 24 smokers. Since
all participants were smokers, clearly smoking-cessation messages would be highly
personally relevant; however, the degree of tailoring manipulates the relevance of the
individual message and the degree to which it increases involvement—indeed, in post-
scan measures, participants rated high-tailored messages as more personally relevant
than low-tailored messages. In the tailored condition relative to the generic condition,
activation was observed in areas associated with self-referential processing such as
autobiographical memories and evaluating self-traits (rostral medial prefrontal cortex
[rostral MPFC]/Brodmann Area 9 [BA9]; precunus; and posterior cingulate cortex);
these areas showed even greater activation in the high-tailored condition relative to the
low-tailored. In a follow-up study Chua et al. (2011) found that activation in the
DMPFC (and to a marginal extent the precuneus) in response to high-tailored messages
predicted smoking cessation in a 4-month period. While these findings suggest that
tailoring messages to individual subjects can influence cessation behavior, they do not
clarify how other message features (e.g., MSV or AS) influence neural activation, or the
extent to which such neural activation is predictive (or serves as a correlate) of either
increased effectiveness or counterarguing in high-involvement groups. Tailoring to
increase self-relevance has long been assumed to increase persuasion by increasing
AS and/or motivation to process, but (as reviewed above) in populations with
established beliefs, both of these variables have the potential to increase counterarguing.

Also particularly relevant to the current study, in a recent article Ramsay and
colleagues pointed out that although much persuasion theory posits the involvement
of explicit cognition (i.e., executive functions), most persuasion neuroimaging studies
to date have focused on networks associated with affective and social information
(Ramsay, Yzer, Luciana, Vohs, & MacDonald, 2013). To investigate the role of
executive function and its interactions with affective networks in antidrug PSA
message processing, the authors showed 70 adolescents ads during fMRI scanning.
Stimulus ads were 20 antidrug PSAs—the 10 strongest and 10 weakest PSAs
as measured by self-report of perceived message effectiveness (PME) in a separate
study—as well as 10 product advertisements that were unrelated to drugs; thus,
stimulus conditions included strong antidrug PSAs, weak antidrug PSAs, and
non-drug-related ads (within participants).

In contrasts between the non-drug ads and antidrug PSAs, differences in arousal-
related activity were found in socioemotional network areas—specifically the bilateral
amygdala (increased activation for antidrug PSAs but not for non-drug ads), medial
orbital frontal cortex, and paracingulate gyrus (deactivation across all ads, with more
for nondrug ads than antidrug PSAs), with additional differences reported in the
bilateral hippocampus and superior temporal gyrus (STG). Within antidrug ads,

8 R. Weber et al.
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contrasts between strong and weak conditions revealed differences in arousal-related
activity in executive-functioning areas—the lateral prefrontal cortex (PFC), especially
the bilateral middle frontal gyrus (MFG; deactivation that was stronger for weak than
for strong PSAs) and left inferior frontal gyrus (IFG; increased activation for strong
PSAs and deactivation for weak PSAs), with additional activation differences in
socioemotional and language-processing regions (bilateral hippocampal gyrus,
lingual gyrus, occipital lobe, and precuneus). Moreover, individual differences in
PME outcomes for the antidrug PSAs were positively correlated with arousal-related
activation changes in lateral executive regions (left IFG and left MFG), indicating that
arousal-related activity changes were greater in these areas when participants
reported the PSAs to be more convincing, whereas arousal-related activation was
not significantly correlated with PME for socioemotional ROIs.

Importantly, the authors point out that areas of the subgenual and DMPFC that
have been identified in other work as associated with persuasion and behavior change
were, in their study, significantly associated with arousal-related activity when
contrasting non-drug ads with antidrug PSAs, but were not significant in analyses
comparing strong to weak antidrug ads. Ramsay et al. (2013, p. 1145) suggest that
“the socioemotional network is necessary, but not sufficient, for persuasive message
processing,” whereas “activity in executive control regions likely relies on and
integrates information from socioemotional brain areas to make judgments about
incoming persuasive information.”

One significant drawback of their study, as in other persuasion-related neurophy-
siological studies, is that Ramsay et al. (2013) did not examine the role of issue
involvement in the persuasion process. As reviewed above, involvement has been
shown in experiments and surveys to be a critical factor in health-message
processing, as it moderates the effects of AS, MSV, and other message-related
variables (and their interactions) on persuasion-related outcomes. Thus, it is unclear
whether there are differential effects in activation patterns associated with message
processing for high- vs. low-risk individuals (the authors did not report whether
prior drug use predicted differences in PME or in any fMRI outcomes). Additionally,
the outcomes measured in the Ramsay et al. (2013) study, like in most other studies,
were restricted to the neural correlates of PME broadly—not correlates related to the
process of counterarguing specifically. Our study is an attempt to close this gap in the
literature. To our knowledge, our study is the first to specifically address the
neurophysiological correlates of counterarguing in high- vs. low-drug-risk individuals
and to use these correlates in a brain-as-predictor approach.

Predicting Real-world Persuasion Outcomes Using Neuroimaging

The brain-as-predictor approach (Cascio, Dal Cin, & Falk, 2013) has demonstrated
that it is possible to use functional neuroimaging data not only to identify regions
involved in various mental tasks but also as predictors for behavioral outcomes.
A number of studies by Falk and colleagues have focused on identifying patterns of
brain activation associated with persuasive processes and using those patterns to
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predict persuasive self-report and behavioral outcomes at both an the individual and
population level. In line with associations between self-referential processing and
persuasion, Falk et al. (2010) found that activation changes in the MPFC in response
to persuasive messages about the risks of sun exposure predicted participants’
changes in sunscreen use, explaining more variance in subsequent behavior with
fMRI data than did post-message self-report measures about attitudes and behavioral
intentions. In a follow-up study, the researchers found that smokers’ MPFC
responses to antismoking PSAs explained more variance in exhaled CO, a marker
of recent tobacco smoking, than post-message self-report (Falk et al., 2011).

At the population level, Falk et al. (2012) showed that activity in the MPFC in a
group of smokers viewing antismoking campaign ads predicted the rank ordering of
ads with regard to their future campaign success as measured by subsequent calls to a
smoking-cessation hotline when the campaign aired. Moreover, both the participant
self-report measures of perceived effectiveness and industry expert rank orderings
produced different, incorrect predictions. Similarly, the same research group (Falk
et al., 2014) found that MPFC activity in smokers in response to graphics with textual
messages about quitting predicted the click-through rate for a subsequent popula-
tion-level email campaign, but only for messages that contained graphic images rated
by another sample as giving strong reasons to quit as opposed to neutral images. This
suggests that the ability for MPFC-related activity to serve as a predictor for
population-level behavior is specific to stimuli that are likely to invoke self-related
processing (i.e., when the audience perceives the message to be personally relevant as
well as convincing). Falk et al. (2014) also demonstrated that neurological activation
associated with self-related processing predicts population-level responses to
antismoking PSAs above and beyond self-report data.

As with the research into neural correlates of behavior, Falk and colleagues’ work
does not address potential differences in outcomes related to issue involvement and
counterarguing as a barrier to persuasion. This study is the first to specifically
address the neurophysiological predictors of counterarguing in high- vs. low-drug-
risk individuals. In other words, by applying the logic and findings from Falk et al.
(2010, 2011, 2012, 2014) to independent anti-cannabis campaign data, we seek
evidence of neural predictors for the theoretically well-established effects of AS-MSV
interactions on message effectiveness as detailed in Weber et al. (2013).

Method

A total of five independent data sources were utilized in this study (Figure 1). The
first two data sources provided information about the AS and MSV of the PSAs used
as stimuli in the present experiment (see samples 2 and 3 in Kang et al., 2006). The
third (see sample 2 in Weber et al., 2013) and fourth (see sample one in Kang et al.,
2006) data sources provided independent ratings of PME for each PSA. Finally, the
present study exposed participants to a subset of these video PSAs while measuring
neural activity in a brain-imaging environment. Consistent with prior brain-as-
predictor approaches (see Berkman & Falk, 2013), percent signal change and
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self-report ratings in the brain-imaging sample were used to predict ratings of PME
in data sources 3 and 4.

Participants

Twenty-eight right-handed healthy participants aged 18–25 (M = 20.3, standard
deviation [SD] = 1.5) with no contraindication to fMRI scanning completed the brain-
imaging portion of this study. This sample was drawn from the undergraduate research
pool at a large California university. Participants received course credit and were paid
$50 for participation. Of these participants, 14 were high-risk for cannabis use and the
remaining 14 were low-risk, as measured using Cappella, Yzer, and Fishbein’s (2003)
risk for marijuana use scale. This scale, which has been used in several studies similar to
this one (Kang et al., 2006; Weber et al., 2013), measures both the frequency of
cannabis use and other items known to correlate strongly with use, such as the
frequency with which the participant is offered cannabis, how many friends of the
participant use cannabis, and the participant’s proclivity for sensation seeking.

Study Materials and Measures

Experimental stimuli. Participants were exposed to 32 unique anti-cannabis video
PSAs retrieved from the antidrug PSA archive at the University of Pennsylvania
Annenberg School for Communication (see Kang et al., 2006). The PSAs were part of
a national anti-cannabis drug campaign and were selected according to previously

1 (AS)

2 (MSV)

5 
fMRI

5 PAS/PMSV

3 PME

4 PME

Independent 
Rankings

Message 
Features

The Present
Study

Figure 1 Five independent samples used in the present study.
Note: The first data source provided information about the AS of PSAs used as stimuli in
the present experiment (see sample 2 in Kang et al., 2006). This dataset is comprised of
322 adolescents (Mage = 15.4, SDage = 1.95, female = 50.3%) recruited from 15 US cities.
The second data source provided a measure of MSV for the same PSAs (see sample 3 in
Kang et al., 2006). Here, trained coders content analyzed MSV features of each PSA (κ =
.79). For the third data source, 599 freshmen students (Mage = 19.65, SDage = 2.12, female
= 73.8%) rated the message effectiveness of each PSA (see sample 2 in Weber et al.,
2013). In the fourth data source, 601 adolescents (Mage = 15.3, female = 49.9%) rated the
same PSAs on perceived message effectiveness (see sample 1 in Kang et al., 2006). The
fifth data source is comprised of 28 female undergraduate students (Mage = 20.3, SDage =
1.5) who participated in the neuroimaging component of the present study.
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and independently established MSV (high/low) and AS (high/low) scores (see data
sources 1 and 2). PSAs were slightly trimmed so that each was exactly 30 s in
duration.

Perceived message effectiveness. PME is a self-report measure that strongly
correlates with the actual effectiveness (AE) of a persuasive message (Bigsby,
Cappella, & Seitz, 2013; Dillard, Shen, & Vail, 2007; Dillard, Weber, & Vail, 2007).
Participants used a 5-point Likert scale to rate each PSA according to the extent that
it: is convincing, is important, helps them/friends stay away from marijuana, and
makes them feel confident in their ability to resist marijuana use (Cronbach’s α = .87).

Perceived message sensation value (PMSV). PMSV is a 17-item, 7-point Likert scale
that measures three dimensions of a message: (1) emotional arousal, (2) dramatic
impact, and (3) novelty (Palmgreen, Stephenson, Everett, Baseheart, & Francies, 2002).
As participants needed to evaluate a set of 32 PSAs (see below), it was important to use
a short form version of PMSV. In the data sources we adopted from Kang et al. (2006),
we found a three-item, 7-point Likert scale short form measure of PMSV that asked
participants to rate the extent to which each PSA was creative, fast-paced, and
dramatic. Two of the three items correlated highly (fast-paced, r = .73, p < 0.001;
creative, r =. 65, p < 0.001) with the content analytical variable MSV in data sources 1
and 2. Thus, we used these two items for our short form PMSV measure. The
correlation between the short version PMSV measure in our prediction sample 5 and
the full-item PMSV measure in data sources 1 and 2 was r = .80 (p < 0.001).

Perceived argument strength (PAS). Participants used the standard nine-item,
5-point Likert scale for evaluations of PAS (Zhao, Strasser, Cappella, Lerman, &
Fishbein, 2011). This measure is used as an alternative to thought-listing measures
when the topic is sensitive in nature.

Procedure

Upon arrival at the brain-imaging facility, participants provided informed consent
and filled out an fMRI screening form. Participants then completed a pre-test
questionnaire that measured basic demographics (age, gender, and ethnicity),
handedness, and cannabis-use risk. Participants were then briefed on the brain-
imaging portion of the study, asked to change into a medical patient gown, and
positioned within the brain-imaging scanner.

In two functional runs (16 m per run), participants viewed 32 unique PSAs (16 PSAs
per run) that differed in MSV and AS. Each PSA lasted 30 s, was separated by a 10 s
baseline, and each functional run included four control clips (30 s duration) where the
video/audio sequence associated with different antidrug PSAs was reversed and
scrambled so that message meaning was removed but visual and auditory intensity
remained constant. Finally, each functional run included four rest blocks (30 s
duration), in which participants were presented with a black screen and instructed to
close their eyes (Figure 2 for a block design).

12 R. Weber et al.
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After completing the two functional runs, participants then viewed all 32 PSAs
outside of the scanner. At this time, participants completed PME ratings for each
PSA. Once complete, participants were debriefed, compensated, and thanked for
their time. The total procedure took roughly 90 minutes.

fMRI acquisition. Data were acquired on a 3-tesla Siemens Magnetom TIM Trio
system with an 8-channel phased-array head coil. A T2-weighted single-shot echo
planar gradient sequence measured blood oxygenated level dependent contrasts
(Repetition time [TR] = 2000 ms, echo time [TE] = 27.2 ms, flip angle [FA] = 77
degrees, field of view [FOV] = 22 × 22 cm2). Each volume consisted of 40 interleaved
slices acquired parallel to the AC-PC plane (3 mm slice thickness, 0 mm gap, 64 × 64
matrix). A high-resolution T1-weighted weighted sagittal sequence image of the whole
brain (TR = 1620 ms, TE = 3.87 ms, FOV = 250 mm, voxel resolution 1 × 1 x 1 mm,
FOV = 250 mm) was collected prior to each functional run.

Data Analysis

fMRI preprocessing. Data preprocessing and analysis were performed using FEAT
(fMRI Expert Analysis Tool v6.0) from the Oxford Center for Functional MRI of the

Figure 2 Block design for each functional run. In each of the two functional runs,
participants watched 16 antidrug PSAs and were exposed to eight control conditions
(four scrambled videos, four black screens). Each video varied in MSV (high/low) and AS
(high/low) and video order was counterbalanced along these dimensions.

Neural Predictors of Message Effectiveness 13
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Brain (FMRIB) Software Library (FSL v5.0; http://www.fmrib.ox.ac.uk/fsl). First, the
data were motion corrected using FSL’s Motion Correction FMRIB Linear Registra-
tion Tool (Jenkinson, Bannister, Brady, & Smith, 2002), which aligns all brain
volumes to a common coordinate system. The data were then brain extracted using
FSL’s BET (Brain Extraction Tool; Smith, 2002), which removes extra-brain matters
such as skull, meninges, venous and arterial processes, and cerebral spinal fluid. Next,
the data were grand-mean intensity normalized, which improves combining results
across participants. The data were then high-pass temporal filtered (σ = 59.5 s), which
removes low-frequency components of the signal by removing a Gaussian-weighted
running average of the time series. The data were additionally normalized to
standard space prior to subsequent analysis using FSL’s FLIRT utility (Jenkinson
et al., 2002; Jenkinson & Smith, 2001) to align the participant’s functional and
structural data—that is, to bring their functional space into alignment with their
high-resolution structural scan. Subsequently, FMRIB’s Nonlinear Registration Tool
(Andersson, Jenkinson, & Smith, 2007a, 2007b) was used to register participant
structural data to the Montreal Neurological Institute [MNI] 152 standard
template—that is, to bring both the structural and functional data into alignment
with a standard template using a nonlinear transformation. Finally, the data were
resliced to 5 mm isotropic voxels using FLIRT with nearest-neighbor interpolation.

Functionally defined regions of interest (fROIs) analysis. In a series of first-level
general linear model (GLM) analyses, externally derived experimental conditions
(MSV and AS) for each run within each participant were modeled as explanatory
variables (EVs). Control and rest conditions were also modeled as EVs and all EVs
were convolved with the hemodynamic response function (Gamma convolution = 6 s,
SD = 3). Covariates included temporal derivatives for each EV. In a second-level
analysis, runs were combined for each participant using a fixed-effects model. Finally,
these lower-level analyses were combined in a third-level FLAME 1 analysis (FMRIB
Local Analysis of Mixed Effects; Beckmann & Smith, 2004; Woolrich, Behrens,
Beckmann, Jenkinson, & Smith, 2004) that modeled main effects for AS, MSV, and
the interaction term. In this analysis, cannabis risk (high/low) was modeled as an EV
and contrasts were calculated for mean activation (high/low risk), high risk > low
risk, and low risk > high risk. Voxels were considered to be significant if they
survived cluster-based thresholding, corrected for multiple comparisons (Z > 2.3,
p < .05; Worsley, 2001). The resulting contrast images were used as functionally
defined regions of interest (fROIs) in subsequent signal change analyses.

fMRI messages analysis. This analysis observed group-level signal change for each
of the 32 antidrug PSAs within the fROIs identified in the aforementioned analysis.
In the first-level GLM analysis, each video, the control conditions, and rest
conditions was modeled as an EV. PSA EVs were contrasted against scrambled
video and control EVs. These EVs were convolved with the hemodynamic response
function (Gamma convolution = 6 s, SD = 3) and temporal derivatives for each EV
were included as covariates. We then conducted a higher-level analysis for each run
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order (16 videos each) using a fixed-effects model with cannabis risk groups (high/
low) as EVs. Replicating the procedure utilized by Falk et al. (2014), a signal change
analysis on the group-level data1 was then conducted for each of the previously
identified fROIs using Featquery in FSL. Percent signal change from baseline
(control) for each PSA was averaged within a 5 mm sphere around the peak voxel
identified for each fROI.

Brain-as-predictor analysis. In this analysis, we used the signal change estimates
for each fROI in the AS × MSV contrast (Table 1) for each PSA and the
corresponding self-report data from our small fMRI sample (source 5) to predict
PME in two large, independent samples: freshmen students at a large California
university (source 3) and US adolescents (source 4). Following the procedures in Falk
et al. (2012, 2014), we converted signal change estimates within our fROIs into
ranks—that is, we obtained a ranked list of PSAs for each risk group (from 1 = lowest
to 32 = highest). Using rank transformations is a preferred strategy when combining
data from multiple data sources. Likewise, the self-report data in our fMRI sample
and the message effectiveness evaluations for each PSA were converted into ranks
from 1 (lowest) to 32 (highest) for each risk group in both independent samples.

Resembling the analytical procedure in Falk et al. (2012, 2014), we used a stepwise
rank regression analysis (Cuzick, 2005; McCullagh, 1980) for testing the prediction
models. In a first step, we used rank-ordered self-reported PAS and PMSV in our
small fMRI sample to establish a prediction reference point that is based on
traditional persuasion theory. In a second step, we added the signal change
information of select neural predictors (fROIs) to the rank regression.

Results

Behavioral Data

Message effectiveness. PME was distributed largely symmetrically and approxi-
mately normally in all data sources with comparable means and SDs—source 3
sample (Weber et al., 2013): M = –.07, SD = 1.08, min/max = –2/+2; source 4 sample
(Kang et al., 2006): M =–.31, SD = 1.21, min/max = –2.6/+1.6; source 5, fMRI
sample: M = –.04, SD = 1.13, min/max = –2/+2.

Experimental conditions. For both the high- and low-risk group participants in
our fMRI sample, the mean of PMSV of messages in the high-MSV condition was
significantly higher than in the low-MSV condition (high risk: ΔM = .46, p < 0.001;
low risk: ΔM = .44, p < 0.001). Likewise, for both high- and low-risk participants, the
mean of PAS of messages in the high-AS condition was significantly higher than in
the low-AS condition (high risk: ΔM = .22, p < 0.001; low risk: ΔM = .31, p < 0.001)
indicating that our experimental manipulation, which was based on content analyses
(MSV) and an evaluation of extracted arguments by an independent sample (AS),
was successful.
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The self-report data in our fMRI experiment confirm that we were able to re-create
the counterarguing conditions detailed in Weber et al. (2013). We estimated a
multi-level model with videos as a repeated measures variable nested within
participants, accounting for the non-independent evaluations of 32 videos by each

Table 1 Activations by risk group.

Structure (fROI)
Maximum
Z-score

Cluster
size

Max Z-score
coordinates (mm)

MSV × AS
High risk > low risk
Superior LOC (left) 3.33 1477 (−28, −76, 18)
Fusiform gyrus 2.85 (−30, −86, −18)

High-risk group
Cerebellum 4.55 3997 (−26, −76, −42)
Middle temporal gyrus 4.45 4295 (−44, −60, 6)
Inferior LOC (left) 4.15 (−58, −68, 0)
Superior lateral occipital cortex (left) 3.79 (−38, −84, 20)
STG 4.26 5624 (56, 4, −18)
Precuneus 4.23 2707 (6, −52, 48)
FP 4.13 1140 (8, 56, 38)
MFG 3.32 1210 (48, 24, 28)
Precentral gyrus 3.15 (46, −2, 28)

Low-risk group
Inferior LOC (right) 4.86 2583 (48, −64, 6)
Middle temporal gyrus 3.98 (44, −56, 12)
Inferior LOC (left) 4.24 1381 (−48, −72, 14)

MSV high > low
High-risk group
Temporal occipital fusiform cortex 4.62 12,342 (30, −56, −12)
Temporal fusiform cortex 4.55 (−30, −44, −20)
Fusiform gyrus 4.32 (20, −82, −8)

Low-risk group
Occipital pole 5.75 17,523 (14, −92, 32)
Temporal occipital fusiform cortex 5.66 (28, −48, −16)
Fusiform gyrus 5.37 (30, −70, −16)

AS high > low
High-risk group
Lingual gyrus 4.18 1843 (−4, −84, −6)
Occipital pole 3.78 (14, −94, 8)

Low-risk group
Lingual gyrus 5.14 11,241 (4, −88, −6)
Superior LOC 4.52 (−30, −82, 22)
Occipital pole 4.41 (10, −96, 6)

Note: Reported activations are cluster corrected (Z > 2.3, cluster p < .05). Coordinates are in MNI 152 space in
units of millimeters. If the x-coordinate is positive, the activation is in the right hemisphere; if the x-coordinate is
negative, the activation is in the left hemisphere. The y-axis spans from posterior (negative values) to anterior
(positive values), while the z-axis is from inferior (negative values) to superior (positive values). Structures
without voxel counts represent local maxima within a given cluster.
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participant. For low-drug-risk participants and PME as an outcome variable, effects
for AS (F = 13.8, p < .001), MSV (F = 7.3, p < .007), and the interaction between AS
and MSV (F = 8.4, p < .004) were significant. In contrast, for high-drug-risk
participants, only a negative AS effect was significant (F = 7.5, p < .006), while the
effects for MSV (F = .89, p < .35) and the interaction AS × MSV did not reach
statistical significance (F = 1.49, p = .22), indicating that counterarguing primarily
occurred in high-drug-risk participants (see Weber et al., 2013).

As expected, high-risk participants overall evaluated the stimulus PSAs as less
effective than low-risk participants (PME, ΔM = .19, F = 6.58, p < .01). Notably, the
effects in our fMRI sample resembled the counterarguing conditions in Weber et al.,
2013, but not in Kang et al. (2006). Assuming that high-risk adolescents would be
more involved in the issue and thus motivated to attend to and process drug PSAs,
Kang et al. (2006, p. 358) hypothesized and showed that the interaction between
MSV and AS “is more likely to occur among high-risk than low-risk adolescents.” As
our self-report data in two samples and the activation pattern in the next section
demonstrate, we concur with the assumption that high-risk participants are
characterized by higher issue involvement and thus are more motivated to attend
and process the messages. However, consistent with the ELM, our self-report data
indicate that this interaction served to increase biased processing in high-risk
participants rather than to draw their attention to arguments that they would find
convincing and would result in increased persuasion, as Kang et al. (and other
authors) have assumed.

The Neural Correlates of Counterarguing

We report key results for selected brain structures in this section. Generally speaking,
we find commonalities in activation across both risk groups in posterior structures
(e.g., the occipital lobe). However, we find additional activation exclusively among
high-risk participants in more anterior regions under conditions of both high MSV
and high AS. Thus, in high-risk participants, we see overall more brain activation in
response to antidrug messages compared with low-risk participants (Figure 3). All
activation reported here is cluster-corrected for multiple comparisons (Z > 2.3, p <
.05). Table 1 specifies structures, maximum Z-scores, and coordinates by group and
contrast.

Regions active in multiple contrasts and groups. Three main structures show
commonalities in activation across both risk groups: the lateral occipital cortex
(LOC), and the lingual and fusiform gyri. As explained in the discussion section,
these findings are largely consistent with prior research on media persuasion. We
find significant activation resultant from the MSV × AS interaction in the LOC for
both risk groups (high-risk max Z = 3.76; low-risk max Z = 4.86), with significantly
stronger activation in the superior LOC for high-risk participants than low-risk (high
risk > low risk max Z = 3.33). Furthermore, the interaction of MSV and AS yields
significantly greater activation in the fusiform gyrus for high-risk participants than
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their low-risk counterparts (max Z = 2.85). We also find fusiform gyrus activation
among both groups of participants for the MSV high > low contrast (high-risk max
Z = 4.32; low-risk max Z = 5.37), but for neither group in the AS high > low contrast.
Finally, our data reveal significant activation across risk groups in the lingual gyrus
for the high > low AS contrast (high-risk max Z = 4.18; low-risk max Z = 5.14).
However, no significant activation is present in this region for the MSV high > low
contrast or the MSV × AS interaction.

Regions active exclusively for high-risk participants in the MSV × AS interaction.
We find activation in the MSV × AS interaction among high-risk participants, but no
significant activation among low-risk participants, in several structures; this suggests
that these regions are likely to be especially useful for explaining differences in message
processing between the risk groups (Figure 2). Most notably, we see activation
exclusively among high-risk participants in the precuneus (PRE, max Z = 4.23), the
frontal pole (FP, max Z = 4.13), the MFG (max Z = 3.32), and the STG (max Z = 4.26).

Brain-as-Predictor

As explained in the method section, we used both self-report and brain activation
data from our fMRI sample (source 5) to predict message effectiveness in two
independent, large samples (sources 3 and 4). As a reminder, following the
procedures in Falk et al. (2012, 2014), we converted our data into ranks from 1
(lowest) to 32 (highest) for each risk group in both prediction samples.

For both prediction samples, we found similar results largely following theoretical
expectations. For low-risk individuals in source 3, we see a significant effect for
PMSV (β = –.27, p < .05) in our rank regression, a non-significant effect for PAS
(β = –.22, p = .70), and a marginally significant interaction between PMSV and PAS

Figure 3 Lateral and medial view of each hemisphere (Xia, Wang, & He, 2013) showing
activation for the MSV × AS interaction in (a) high-risk participants and (b) low-risk
participants. All activation is cluster corrected (Z > 2.3, cluster p < .05); red indicates
lower significant Z-scores, while yellow indicates higher significant Z-scores.
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(β = 1.1, p < .07). For low-risk individuals in source 4, we see a significant effect for
PMSV (β = –.21, p < .05), a non-significant effect for PAS (β = –.72, p = .19), and a
significant effect for the interaction between PMSV and PAS (β = 1.52, p < .01). The
strong interaction between PMSV and PAS is of disordinal nature, suggesting that
the significant interaction is meaningful even without significant main effects (Leigh
& Kinnear, 1980).

In contrast, for the high-risk individuals, none of these effects reach significance in
either sample. Accordingly, the models’ prediction accuracy is high and significant
for low-risk individuals (source 3: adjusted R2 = .53, p < .001; source 4: adjusted R2 =
.57, p < .001), but less than half of this magnitude and non-significant for high-risk
individuals (source 3 adjusted R2 = .23, p = .16; source 4: adjusted R2 = .36, p < .10).
Essentially, while the prediction based on only self-report data of a small sample
produced decent predictions of effectiveness among independent samples of low-risk
individuals, the model failed to predict PME in independent samples of high-risk
individuals.

Next, we added our neural correlates in Table 1 for the AS × MSV contrast (actual
AS and MSV as defined by our conditions, not perceived AS and MSV) to our
regression model. Two structures emerged as powerful predictors for PME in
independent samples: the STG (56, 4, –18; Montreal Neurological Institute [MNI]
152 space) and the MFG (48, 24, 28) partly reaching into BA9. All other structures did
not reach statistical significance. For the high-risk group in source 3, we find
significant effects for both the self-report data and the neural predictors in the
regression (PMSV, β = .30, p < .05; PAS, β = –.57, p < .31; PMSV × PAS, β = 1.13,
p < .05; STG, β = .40, p < .02; MFG, β = –.58, p < .001) indicating effects of our neural
predictors that go above and beyond self-report data. The same effect pattern holds
when applied to source 4 (PMSV, β = .26, p < .07; PAS, β = –.23, p < .63; PMSV × PAS,
β = .86, p < .09; STG, β = .54, p < .001; MFG, β = –.45, p < .01) with a slight emphasis
on the neural predictors over the self-report data. In contrast, for the low-risk group in
source 3, only MFG (β = .40, p < .002) reached statistical significance in addition to the
self-report effects.

Further, compared to the high-risk group, the MFG effect has a positive direction;
that is, signal change increases in MFG predict higher PSA ranks in low-risk
individuals, but lower PSA ranks in high-risk individuals. For participants in source
4, none of the neural predictors significantly improved the predictions for low-risk
individuals (although STG with p < .09 and MFG with p < .09 came close). With the
two neural predictors included in the models, the prediction accuracy for high-risk
individuals now almost reaches the level for low-risk individuals in source 3, and
even surpasses the prediction accuracy in source 4 (source 3: high risk, adjusted R2 =
.46, p < .001; low risk, adjusted R2 = .65, p < .001; source 4: high risk, adjusted R2 =
.59, p < .001; low risk, adjusted R2 = .57, p < .001).

In a final step, we investigated the predictive power of previously and
independently identified neural predictors for the persuasiveness of antidrug
messages. Specifically, we considered one fROI (left BA9, max-z location: –9, 54,
33, MNI-space) from Chua et al. (2009), two fROIs (IFG; max-z: –46, 28, 12, MFG;
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max-z: –30, 12, 54) from Ramsay et al. (2013), and one fROI (MPFC; center of
gravity: –4.2, 56.8, –3.6)2 from Falk et al. (2014).

Both Ramsay’s MFG and Chua’s left BA9 significantly improved the predictions
for high-risk participants but not for low-risk participants in both samples (source 3:
Ramsay’s MFG, β = .64, p < .0001; Chua left BA9, β = –.34, p < .02, STG, β = .67, p <
.0001, MFG, β = –.78, p < .0001; source 4: Ramsay’s MFG, β = .59, p < .0001; Chua
left BA9, β = –.36, p < .02; STG, β = .80, p < .0001, MFG, β = –.63, p < .0001). For the
low-risk participants, none of the previously identified predictors significantly
improved the predictions. With the addition of the two external neural predictors,
the prediction accuracy in high-risk individuals matched and surpassed the
prediction accuracy in low-risk individuals (source 3: high risk, adjusted R2 = .66,
p < .001; low risk, adjusted R2 = .67, p < .001; source 4: high risk, adjusted R2 = .75,
p < .001; low risk, adjusted R2 = .61, p < .001).

When we removed our neural predictors from the model (while keeping the self-
report data) and replaced them with the external neural predictors, the only external
predictor that contributed significantly was Falk’s MPFC, and only for low-risk
individuals. This suggests that although close in location to our neural predictors, the
predictors previously identified by Ramsay and Chua cover a distinct aspect in the
counterarguing process in high-risk individuals that spans across all four neural
predictors.

Discussion

Overall, our findings suggest an interpretation consistent with prior research on the
neural mechanisms of media persuasion (e.g., Chua et al., 2009; Falk et al., 2010;
Ramsay et al., 2013). While both high- and low-risk participants are more attentive
to high MSV and high AS messages, the interaction of MSV and AS among high-risk
participants yields activity suggesting an increase in self-referencing as well as higher-
order executive processing and cognitive effort that is absent among low-risk
participants. This is consistent with counterarguing by high-drug-risk participants
when faced with an antidrug message.

Visual Processing and Attention

For both groups, we find strong activation in LOC in all contrasts, as well as
activation in the lingual and fusiform gyri for the AS and MSV contrasts,
respectively. Broadly speaking, these areas are thought to be involved in visual
processing and top-down control of attention (Hopfinger, Buonocore, & Mangun,
2000). This suggests that the combination of high MSV and high AS yields greater
attention to the message for both risk groups, with a particularly pronounced effect
for high-risk participants compared with their low-risk counterparts. Given the
different patterns of activation across the MSV and AS contrasts, it seems that MSV
is driving fusiform activation, whereas AS is driving activation in the lingual gyrus.
Our results replicate Ramsay et al.’s (2013) finding that stronger arguments produce
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greater activation in the lingual gyrus and LOC than weak ones. The results also
accord with Chua et al.’s (2009) finding that tailored persuasive messages produce
greater activation in the lingual gyrus than generic messages, and Falk et al.’s (2010)
finding that activity in the fusiform gyrus is associated with successful persuasion to
change health-related behavior.

Executive Processing and Self-referencing

Unlike the low-risk group, our high-risk participants showed patterns of activation in
the MSV × AS interaction that are consistent with greater self-referencing, semantic
processing, and weighing between different outcomes. Four structures in particular
lend credence to this claim. First, the precuneus has been associated with self-
referencing (e.g., Cavanna & Trimble, 2006) and integrating new information with
prior knowledge (Wilson, Molnar-Szakacs, & Iacoboni, 2008). It appears to be more
active in response to high-tailored messages than low-tailored ones (Chua et al.,
2009) and stronger messages than weaker ones (Ramsay et al., 2013). Furthermore,
Falk et al. (2010) found the precuneus to be associated with both intention and actual
behavioral change in response to a health-related PSA. Second, the frontal pole (FP)
is important to executive decision-making, and seems to enable cognitive branching
to weigh between competing choices (Koechlin & Hyafil, 2007). Third, the MFG has
been associated with language comprehension, semantic processing, and related
high-order cognitive functions (Wilson et al., 2008). Falk et al. (2010) found the MFG
to be associated with successful persuasion to change health-related behavior,
Ramsay et al. (2013) found it to be more strongly activated by strong messages
than weak ones, and Chua et al. (2009) found it to be more active in high-tailored
messages than low-tailored ones. Finally, the STG is known to play an important role
in language processing, narrative comprehension (Hasson, Furman, Clark, Dudai, &
Davachi, 2008), as well as monitoring of social behavior and the mental states of
others (Adolphs, 2006). Taken together, the activation of these regions among high-
risk, but not low-risk, participants suggests greater executive and effortful processing
by high-risk individuals to weigh the antidrug PSA message against existing
conflicting beliefs. Notably, greater executive and effortful processing is difficult to
conciliate with the assumption that high-risk participants simply ignored the
messages or found the PSAs less convincing.

Brain-as-Predictor

The brain-as-predictor results reported in this study are particularly compelling for
two reasons. First, we see that the inclusion of fROIs of counterarguing dramatically
improves the prediction of message effectiveness in independent samples, especially
among high-risk individuals. It is important to note here that, unlike previous
persuasion neuroscience studies, we identified our fROIs of counterarguing by means
of an experimental manipulation of message features that is firmly rooted in
persuasion theory. Within this frame and consistent with previous studies (Weber
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et al., 2013), we find that using self-report data in a small sample to predict message
effectiveness in a larger sample works among low-risk participants but fails to do so
for high-risk participants. However, once only two of our fROIs of counterarguing
are included, the prediction accuracy among counterarguing high-drug-risk indivi-
duals in independent samples can reach and even surpass the prediction accuracy of
non-counterarguing low-drug-risk individuals. Notably, like Falk et al. (2012), we
accomplished this result with only a small sample of participants in an fMRI
experiment. This provides further evidence for the notion that “neural focus groups”
can indeed predict population-level media effects.

Secondly, we see that previously identified fROIs associated with processing
persuasive messages do not independently predict PME in our paradigm. Still, it
should be noted that these fROIs do improve model fit when included with fROIs
identified in Table 1. Considered together, the results of our persuasion-theory-based
fROI analysis combined with the brain-as-predictor paradigm provide evidence
consistent with counterarguing processes that go beyond simply disregarding or
finding PSAs less convincing. Moreover, our results demonstrate that these fROIs
predict significant additional variance in PME in similar groups within new samples.

Limitations

A potential limitation of our study stems from a reliance on self-report measures of
PME instead of a measurement of AE or behavior. While we acknowledge that PME
is an indirect measure of AE, empirical results consistently show a robust relationship
between PME and AE (Bigsby et al., 2013; Dillard, Shen, et al., 2007; Dillard, Weber,
et al., 2007). Relatedly, the present study does not utilize a behavioral measure as an
outcome variable. The extension of commonly used message effectiveness measures
to behavioral outcomes has been demonstrated in other brain-as-predictor studies
(e.g., Falk et al., 2010, 2011, 2014). Nevertheless, our results demonstrate the utility of
self-report measures in a brain-as-predictor approach and provide a theoretically
grounded extension that contextualizes previous research findings. For instance, Falk
et al. (2014) found that neural activity in the MPFC associated with processing high
AS PSAs predicts outcomes in an independent sample. In our study, we see similar
results, but only for low-risk participants. These findings correspond with recent
developments in the persuasion literature (see Weber et al., 2013) and underscore the
importance of accounting for the interaction between individual factors and message
features.

Another limitation relates to the nature of conducting experimental research in an
fMRI environment. We argue here that issue involvement in high-risk participants
leads to biased processing. However, some of our effects may be dampened by the
fact that we required low-risk participants to pay attention to the messages while
being in the scanner. At the same time, high-risk participants had no chance to
disengage or not pay attention to the message, as all were told to watch and rate each
PSA. It is important to note, however, that we indeed required both participant
groups to watch and be at least attentive enough to rate PSAs. We may believe that
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counterarguing is an inevitable outcome of that situation for our participants, but we
did not force counterarguing. In addition, if counterarguing was an inevitable
outcome in both groups, we should not see the clear group differences evident in our
results.

A final limitation refers to the depth of our fMRI analyses. For this paper, we
conducted a standard GLM analysis for our imaging data, which primarily identifies
neural correlates of the experimental task (brain maps). This type of analysis ignores
the fact that brain activation always spans across multiple networks in a complex,
dynamic process. Thus, subsequent analyses should investigate functional connectiv-
ity among the neural correlates of counterarguing. For instance, in a recent
psychophysiological interaction analysis, Ramsay et al. (2013) found that, within
antidrug ads, contrasts between strong and weak conditions revealed differences in
arousal-related activity in executive-functioning areas—the lateral PFC, especially the
bilateral MFG (deactivation that was stronger for weak than for strong PSAs) and left
IFG (increased activation for strong PSAs and deactivation for weak PSAs), with
additional activation differences in socioemotional and language-processing regions
(bilateral hippocampal gyrus, lingual gyrus, occipital lobe, and precuneus). As a next
step, we call on our fellow researchers to join us and investigate if the dynamic
interaction between individual characteristics and message features as persuasion
theory dictates modulates moment-by-moment functional connectivity in message
receivers’ brains.

Conclusion

The present study is among a growing body of literature that uses neural activity in a
small sample to predict outcomes in a larger independent sample. This brain-as-
predictor approach (Berkman & Falk, 2013) not only explains considerable variance
but also seems to do so even when there is limited demographic correspondence
between samples. This is a clear advantage in that this physiological approach seems
to bypass many of the limitations, such as people’s inability to accurately self-report
attitudes and behavior, inherent to more traditional methods. The findings reported
in this study also provide confirmatory support for the structural correlates of
persuasion identified in previous research (e.g., Chua et al., 2009; Falk et al., 2010;
Ramsay et al., 2013). Moreover, the present study contextualizes these earlier findings
by offering a theoretically grounded investigation of the neural correlates of
counterarguing. We hope that our findings assist researchers and practitioners as
they work to design messages that are more likely to persuade high-drug-risk target
audiences.
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Notes

[1] Unlike Falk et al. (2014), we derived signal change of PSA contrasts on the group (second)
level and not on the subject (first) level. This procedure avoids using average PSA ranks per
subject for a second ranking procedure in which PSA are ranked against each other. We
found this procedure less constraining for the variance of ranks and thus more conservative.
In other words, with the ranking procedure used in Falk et al., the stability and fit of our
prediction models reported here would increase rather than decrease.

[2] Compared to the MPFC mask generated by Falk et al. (2014), our MFG activation is more
superior, posterior, and lateral. We find MFG activation in the right hemisphere, whereas
Falk and colleagues found more medial MPFC activation tending toward the left
hemisphere. However, Chua’s fROI is comparably close to Falk’s MPFC.
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